

Vehicle-in-Virtual-Environment (VVE) Method for

Developing and Evaluating VRU Safety of Connected and
Autonomous Driving

 Haochong Chen (https://orcid.org/0009-0000-5461-0822)
 Xincheng Cao (https://orcid.org/0009-0008-2525-9031)
Bilin Aksun-Guvenc (https://orcid.org/0000-0003-0836-9286)
 Levent Guvenc (https://orcid.org/0000-0001-8823-1820)

FINAL RESEARCH REPORT – July 31, 2024

Contract # 69A3552344811

The contents of this report reflect the views of the authors, who are responsible for the
facts and the accuracy of the information presented herein. This document is
disseminated in the interest of information exchange. This report is funded, partially or
entirely, by a grant from the U.S. Department of Transportation’s University Transportation
Centers Program. The U.S. Government assumes no liability for the contents or use
thereof.

1

Contents

Chapter 1: Overview ... 3

Chapter 2: Vulnerable Road User (VRU) Detection .. 6

2.1 Camera Based Vulnerable Road User (VRU) Detection .. 6

2.2 Lidar Data Process and Vulnerable Road User (VRU) Trajectory Prediction 9

2.3 Conclusion ... 11

Chapter 3: Disturbance Observer (DOB) and PID based Path Tracking 12

3.1 Introduction ... 12

3.2 Path Generation .. 12

3.3 Linear Path-tracking Model .. 13

3.4 Disturbance Observer ... 15

3.5 Simulation Study ... 19

3.6 Conclusions ... 24

Chapter 4: Deep Reinforcement Learning (DRL) Based Collision Avoidance 25

4.1 Introduction ... 25

4.2 Methodology ... 27

4.2.1 Vehicle Model ... 27

4.2.2 Low-level PID Pure Pursuit Path Tracking Controller Design 31

4.2.3 High-level DRL Based Collision Avoidance Controller Design 32

4.3 Results .. 38

4.3.1 Test Case 1 .. 39

4.3.2 Test Case 2 .. 41

2

4.4 Conclusions ... 44

Chapter 5: Vehicle-in-Virtual-Environment (VVE) .. 46

5.1 Introduction ... 46

5.2 Methodology ... 47

5.2.1 VVE System Structure ... 47

5.2.2 Frame Transformation/Conversion for Motion Synchronization 49

5.2.3 V2P System Structure ... 53

5.3 Results .. 55

5.4 Conclusions ... 57

Chapter 6: Future Work ... 59

References ... 61

3

Chapter 1

Overview

With rapid urbanization and technology development, the number of privately owned

vehicles has dramatically increased each year. The excessive numbers of private vehicles

have led to traffic congestion and car accidents, which gradually become a new set of

challenges that every modern city must confront. According to the Global Status Report on

Road Safety released by the World Health Organization (W.H.O.), over 50 million people get

injuries, and 1.3 million individuals lose their lives in car accidents worldwide each year [1].

In the United States alone, over 2.3 million people are injured, and around 40,000 lives are

lost in car accidents [2]. Among these car accidents, around 75% are attributed to human

errors, such as drowsy driving, driving under the influence (DUI), and distracted driving. The

use of an Automated Driving System (ADS) that benefits from powerful and robust

autonomous driving algorithms may significantly reduce car accidents caused by human

mistakes, thereby becoming a potential solution to these urgent traffic challenges. The

Society of Automotive Engineers (SAE International) has categorized autonomous vehicles

into six levels, ranging from Level 0 (fully manual driving) to Level 5 (fully autonomous

driving). Particularly, vehicles at SAE Levels 4 and 5 have the capability to dramatically

decrease accidents caused by human mistakes since their automated driving algorithms

should have robust and steady performance under all traffic condition. In order to increase

the level of autonomy of road vehicles, extensive research and testing have been conducted

in the field in recent years. However, alongside these developments, new challenges and

potential issues have also emerged especially related to rare and extreme events that usually

end in collisions or near collisions.

The current approach to testing and evaluating connected and autonomous driving

algorithms typically relies on model-in-the-loop (MIL) and hardware-in-the-loop (HIL)

simulations, where the effectiveness of these methods is highly dependent on the accuracy

of the simulated vehicle models that are used. Following these simulations, there is limited

use of proving grounds, which is then followed by public road deployment of beta versions

of the software and technology. This final public road development process forces other road

4

users to involuntarily participate in the development and evaluation of these beta-level

autonomous driving functions. This approach is unsafe, costly, and inefficient, leading to

numerous issues during the deployment of autonomous vehicles and contributes to a

significant loss of public trust.

To address the aforementioned challenges, the Vehicle-in-Virtual-Environment (VVE)

method is proposed as a safe, efficient, and cost-effective solution for the development,

evaluation, and demonstration of connected and autonomous driving functions. The VVE

method places the vehicle in a highly realistic virtual environment with accurate virtual

sensor feeds, while the actual vehicle operates in a large, empty test area. VVE method can

synchronize real vehicle motions in the real world and virtual vehicle motions in a virtual

environment, to allow for the creation of various virtual traffic scenarios for safe and

resource-efficient testing.

In this two-year project, we are focused on applying the Vehicle-in-Virtual-

Environment (VVE) method to develop, evaluate, and demonstrate safety functions for

Vulnerable Road Users (VRUs). In the first year, our primary focus was on pedestrian safety

and the results are presented in this final report. We analyzed five key pedestrian crash

scenarios identified by the Fatality Analysis Reporting System (FARS), an organization under

the National Highway Traffic Safety Administration (NHTSA) that compiles vehicle crash

data. The pedestrian crash scenarios we examined include: "Crossing Roadway, Vehicle Not

Turning" (FARS 750), "Walking/Running Along Roadway" (FARS 400), "Dash/Dart-Out"

(FARS 740), "Crossing Roadway, Vehicle Turning" (FARS 790), and "Crossing Expressway"

(FARS 910). These scenarios formed the basis of our research during the first year. We

recreated these five traffic crash scenarios using CARLA (Car Learning to Act) virtual

environment to ensure realistic and accurate simulations for our analysis. The detailed

traffic crash scenarios simulation videos are provided next. Videos Link: 1. FARS400:

https://youtu.be/3kpJUbqACxg 2. FARS740: https://youtu.be/3r9mYsyRZA8 3. FARS750:

https://youtu.be/5RVWsK6CnLw 4. FARS790: https://youtu.be/F0ZQcdZlh-4 5. FARS910:

https://youtu.be/cb-_dqDf1oM.

https://youtu.be/3kpJUbqACxg
https://youtu.be/3r9mYsyRZA8
https://youtu.be/5RVWsK6CnLw
https://youtu.be/F0ZQcdZlh-4
https://youtu.be/cb-_dqDf1oM

5

Therefore, we designed a comprehensive autonomous driving solution to ensure

pedestrian safety. In Chapter 2, we explore an RGB camera and LiDAR-based perception

method to identify, locate, and predict the trajectory of pedestrians in traffic environments.

Chapter 3 demonstrates a disturbance observer integrated with a PID path tracking

controller which provides precise and accurate path tracking for the collision free path.

Following this, Chapter 4 introduces a deep reinforcement learning (DRL) based approach

for path planning and collision avoidance. In Chapter 5, we discuss the principles of the

Vehicle-in-Virtual-Environment (VVE) method and detail its implementation for testing and

evaluating the ADAS system proposed in the previous chapters. Finally, in Chapter 6, we

conclude our first-year research and outline future work.

The publications that summarize some of our research findings with project support

acknowledgment are:

1. H. Chen and B. A. Guvenc, “Deep Reinforcement Learning Based Collision Avoidance

of Automated Driving Agent,” SAE International, Warrendale, PA, SAE Technical

Paper 2024-01–2556, Apr. 2024. [Online]. Available:

https://www.sae.org/publications/technical-papers/content/2024-01-2556/

2. X. Cao, H. Chen, S. Y. Gelbal, B. A. Guvenc, and L. Guvenc, “Vehicle-in-Virtual-

Environment Method for ADAS and Connected and Automated Driving Function

Development, Demonstration and Evaluation,” SAE International, Warrendale, PA,

SAE Technical Paper 2024-01–1967, Apr. 2024. [Online]. Available:

https://www.sae.org/publications/technical-papers/content/2024-01-1967/

3. H. Chen, X. Cao, L. Guvenc, and B. Aksun-Guvenc, “Deep-Reinforcement-Learning-

Based Collision Avoidance of Autonomous Driving System for Vulnerable Road User

Safety,” Electronics, vol. 13, no. 10, Art. no. 10, Jan. 2024, doi:

10.3390/electronics13101952. [Online]. Available: https://www.mdpi.com/2079-

9292/13/10/1952

https://www.sae.org/publications/technical-papers/content/2024-01-2556/
https://www.sae.org/publications/technical-papers/content/2024-01-1967/
https://www.mdpi.com/2079-9292/13/10/1952
https://www.mdpi.com/2079-9292/13/10/1952

6

Chapter 2

Vulnerable Road User Detection

2.1 Camera Based Vulnerable Road User (VRU) Detection

In this section, the use of a computer vision based pedestrian perception strategy for

VVE method to test autonomous driving functions is investigated using readily available and

well-established approaches. Plenty of research has already done in the pedestrian detection

field. The first approach is to perform object detection using a two-stage process: proposal

generation and object detection. The proposal generation step uses a selective search

algorithm to generate multiple region proposals which indicate potential object locations.

Then, a neural network is applied to classify the object within the proposed region and refine

its bounding box. As an example of this approach, Girshick et al. introduced R-CNN, a novel

framework that leverages rich feature hierarchies from pre-trained convolutional neural

networks to perform accurate object detection and semantic segmentation [3]. Building on

the foundation of R-CNN, Girshick further refined the model with Fast R-CNN by integrating

the region proposal and feature extraction steps. This integration was achieved by

introducing a Region of Interest (RoI) pooling layer that extracts a fixed-length feature vector

from the feature map for each object proposal, followed by fully connected layers that

classify the features into object categories and regress the bounding box coordinates [4]. Ren

et al. explored the concept further and proposed Faster R-CNN. This algorithm incorporated

a Region Proposal Network (RPN) that shares full-image convolutional features with the

detection network, thus enabling nearly cost-free region proposals [5]. Sun et al. introduced

Sparse R-CNN which simplifies the previously complex pipeline and reduces the dependency

on heuristic design, pushing the boundaries of object detection with a sparse set of highly

effective proposals [6]. However, the major limitations of the R-CNN architecture are its

deficiency in real-time performance caused by complicated procedure and computational

complexity.

The second approach is to merge the aforementioned two stages by applying a single

7

neural network to the whole image, dividing the image into regions and predicting bounding

boxes and probabilities for each region simultaneously. Redmon introduced a convolutional

neural network (CNN)-based architecture known as "YOLO" (You Only Look Once) for multi-

object detection. This architecture segments an image into multiple small grids, assigning

each grid the task of detecting objects whose center points fall within its boundaries. For

each grid cell, the model predicts multiple bounding boxes and assigns labels to these boxes,

each with associated class probabilities. To enhance the accuracy and reduce redundancy,

the model employs Non-Maximum Suppression (NMS) to eliminate overlapping bounding

boxes that detect the same object [7]. Currently, since its debut, the YOLO architecture has

undergone numerous iterations and enhancements, evolving to its eighth generation—

YOLOv8. These iterations have not only improved the model's accuracy and speed but also

enabled YOLO to effortlessly recognize a wide variety of objects [8]. Additionally, there are

many pre-trained YOLO models available for us to choose from. Therefore, in this chapter,

we propose a training pipeline that utilizes a pre-trained, high-performance YOLO model and

applies transfer learning to our dataset. One of the challenges in performing pedestrian

detection is that the VVE method conducts traffic tests in a virtual environment, meaning all

sensors are virtual. Therefore, unlike traditional pedestrian detection tasks that utilize real

traffic images, our RGB camera is limited to process only virtual images. To address this

challenge, the task is separated into two stages: 1. Find powerful pre-trained YOLO model. 2.

Build CARLA VRU detection dataset and perform transfer learning on the dataset.

The YOLO architecture we implemented for pedestrian detection is YOLO v8, which

can identify pedestrians and bicyclists [9]. However, the original model sometimes fails to

accurately recognize vulnerable road users (VRUs) and other vehicles in the virtual

environment. Therefore, we retrained the pre-trained the model using the CARLA Object

Detection Dataset to enhance its performance. The specific datasets used for training

included versions 20, 18, and 16 from the CARLA Object Detection Dataset [10]. The training

parameters were set to 20 epochs, approximately 7 hours of training time, with an image

size of 640, while other parameters remained at their default settings. After transfer learning,

we observed a significant improvement in performance, achieving a processing speed of 130

ms per frame, which meets real-time performance criteria.

https://universe.roboflow.com/alec-hantson-student-howest-be/carla-izloa/dataset/20

8

Figures 2.1 and 2.2 clearly demonstrate that the model, after undergoing transfer

learning, can accurately detect vehicles and multiple vulnerable road users (VRUs), including

pedestrians and bicyclists. This enhanced ADAS’s detection capability by letting the system

accurately interpret traffic information. Additionally, by integrating Lidar data, the precise

locations of each detected VRU can be calculated, enabling the prediction of pedestrian

trajectories. This integration of Lidar further enhances the system's ability to anticipate and

respond to potential hazards on the road. Lidar data processing technology will be discussed

in the next section. The demo video link is: https://youtu.be/N4Q_0O1uVuA.

Figure 2.1: Yolo-v8 pedestrian detection. The first pedestrian is walking to the left while the

second pedestrian is running to the right. Both pedestrians are crossing the street near a T-

shaped intersection using the crosswalk.

https://youtu.be/N4Q_0O1uVuA

9

Figure 2.2: Yolo-v8 bicyclist and vehicle detection. There is a bicycle followed by a vehicle.

The bicyclist is also identified as a person. Both the bicyclist and vehicle are moving along

the cross street in a T-shaped intersection.

2.2 Lidar Data Process and Vulnerable Road User (VRU) Trajectory Prediction

Lidar technology offers significant advantages over traditional front-facing vehicle

cameras, particularly in the field of autonomous vehicles. Unlike cameras, which are limited

to capturing visual data from the front of the vehicle, a three-dimensional Lidar provides a

360-degree view, allowing it to detect obstacles all around the vehicle. This comprehensive

coverage is important for the complex decision making required in autonomous driving.

Lidar sensors work by emitting laser beams and measuring the time it takes for the reflection

to return, thereby creating detailed and accurate three-dimensional maps of the

environment. This capability makes Lidar exceptionally good at detecting and tracking

vulnerable road users, even in challenging conditions such as low light or obstructed views.

Consequently, there has been substantial research and development in the field, focusing on

leveraging Lidar for vulnerable road user detection, which is important for improving safety

and operational efficiency in autonomous vehicle technologies.

Muhammad et al. focused on enhancing object detection in autonomous driving

through a neural network approach that integrates visual data with Lidar point clouds. They

proposed a framework aiming to address the inaccuracies common in Lidar detections by

10

using separate processing streams for visual and Lidar data, which allows for a lightweight

Lidar-only setup during runtime, if needed. The approach they used is designed to work in

real-time on embedded platforms, suggesting significant potential for practical applications

in dynamic environments [11]. Sahba et al. introduced an effective method for three-

dimensional object detection using Lidar data through the PointPillars network. Their study

utilizes the nuScenes dataset to train the model for detecting cars, pedestrians, and buses,

demonstrating that increasing the number of Lidar sweeps substantially improves detection

performance. Their research emphasizes the potential of integrating different types of

sensor data to further enhance the encoder's effectiveness in autonomous vehicle

applications [12]. Liu et al. developed a Lidar-camera fusion algorithm for three-dimensional

object detection, focusing on autonomous driving applications. Their proposed FuDNN

network used a two-dimensional backbone for image feature extraction and an attention-

based fusion sub-network for integrating features from camera and Lidar data. Their model

was tested on the KITTI dataset and has shown high accuracy in detecting cars, reflecting

significant improvements over existing Lidar-camera fusion techniques [13]. Naich et al.

introduced a Lidar-based intensity-aware three-dimensional object detection approach for

outdoor environments. They proposed a voxel encoder that generates intensity histograms

to enhance the feature set for robust detection, integrated within a single-stage detector.

Their method was evaluated using the KITTI dataset which not only matched but in some

cases surpassed state-of-the-art performance, especially in detecting pedestrians and

cyclists, while maintaining high frame rates during inference [14]. Zhu et al. introduced the

Spatio-Temporal Graph Transformer Network (STGFNet) for predicting multi-pedestrian

trajectories, leveraging both spatial and temporal data. Their proposed model integrated a

novel decoder structure and a memory mechanism to enhance trajectory continuity and

used HuberLoss for the first time as a loss function, showing notable improvements in

prediction accuracy across multiple datasets. This research exemplified the usefulness of

combining transformer architectures with graph neural networks to address the dynamic

complexities of pedestrian movement in crowded spaces [15].

11

2.3 Conclusion

In this chapter, we explored various advanced methodologies for detecting VRUs

using camera-based and Lidar technologies for autonomous driving. Our literature review

indicates that YOLOv8 is not only efficient for real-time pedestrian and bicyclist detection

but also straightforward to implement. By leveraging pre-trained models and applying

transfer learning, our model has demonstrated the capability to accurately identify various

VRUs in a simulated environment. Additionally, we have found that Lidar technology, in

comparison to cameras, provides superior accuracy in locating the positions of road users

due to its ability to generate precise three-dimensional maps of the surrounding

environment. Therefore, we conducted an extensive review of the latest studies in Lidar

technology and pedestrian trajectory prediction, which will undoubtedly enhance our

foundation for future research in enhancing the safety and efficiency of autonomous driving

systems. The vehicle-in-virtual-environment development and evaluation method of our

research uses sensor feeds from the virtual environment of vehicle and vulnerable road user

interactions of high collision risk.

12

Chapter 3

Disturbance Observer (DOB) and PID based Path

Tracking

3.1 Introduction

 In the previous chapter, the process of detecting vulnerable road users was described.

This chapter focuses on path tracking for following a collision free path in the presence of

vulnerable road users.

3.2 Path Generation

 The collision avoidance maneuver in this case is assumed to be a single lane-change.

The overall procedure of obtaining such a reference path can be condensed to the following:

(a) generate limited number of sample waypoints to ascertain the general shape of the path;

(b) generate dense waypoints based on the sample waypoints to complete the path waypoint

design; (c) apply segmentation to the dense waypoints to cut the path into several segments,

ideally with each segment containing a minimum amount of features (i.e. corners); and (d)

perform polynomial fit optimization to obtain the desired path expression that guarantees

smooth curvature within each segment as well as smooth transition between the segments.

The detailed steps of this procedure are outlined in reference [16]. In Figure 3.1, an example

of the optimized reference path and its path curvature are displayed to demonstrate the

smoothness of such a path generated using this approach.

13

Figure 3.1: Reference path optimization: (a) optimized path; (b) path curvature of the

optimized path [16].

3.3 Linear Path-tracking Model

 This section presents the linear path-tracking model that serves as the basis for the

proposed control routine. The detailed derivation of this model can be found in [17]. This

linear path-tracking model contains two components: a (linear) lateral single-track model

and a path-tracking model augmentation. The path-tracking scenario is illustrated in Figure

3.2, and the resulting linear path-tracking model is described in Equation (3.1). The

parameters of this model are specified in Table 3.1. It can be observed that, for generality,

the model presented in Equation (3.1) has both front and rear steering angles 𝛿𝛿𝑓𝑓 and 𝛿𝛿𝑟𝑟 as

inputs. In our case, the vehicle is assumed to be front-wheel-steer only. It can also be noticed

that path curvature 𝜌𝜌𝑟𝑟𝑟𝑟𝑓𝑓 and yaw moment disturbance 𝑀𝑀𝑧𝑧𝑧𝑧 enter the model as external

disturbances. Additionally, the preview distance 𝑙𝑙𝑠𝑠 is chosen to be a linear function of vehicle

velocity. It should also be remarked that vehicle speed can be scheduled according to the

refence path curvature to make sure vehicle lateral acceleration stays within an acceptable

limit.

⎣
⎢
⎢
⎢
⎡ �̇�𝛽
�̇�𝑟

Δ𝜓𝜓𝑝𝑝̇
𝑒𝑒�̇�𝑦 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
−𝐶𝐶𝑓𝑓−𝐶𝐶𝑟𝑟
𝑀𝑀𝑀𝑀

−1 + 𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓
𝑀𝑀𝑀𝑀2

0 0
𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓

𝐼𝐼𝑧𝑧

−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓2−𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟2

𝐼𝐼𝑧𝑧𝑀𝑀
0 0

0 1 0 0
𝑉𝑉 𝑙𝑙𝑠𝑠 𝑉𝑉 0⎦

⎥
⎥
⎥
⎥
⎤

�

𝛽𝛽
𝑟𝑟

Δ𝜓𝜓𝑝𝑝
𝑒𝑒𝑦𝑦

�+

⎣
⎢
⎢
⎢
⎡
𝐶𝐶𝑓𝑓
𝑀𝑀𝑀𝑀

𝐶𝐶𝑟𝑟
𝑀𝑀𝑀𝑀

𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓
𝐼𝐼𝑧𝑧

𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟
𝐼𝐼𝑧𝑧

0 0
0 0 ⎦

⎥
⎥
⎥
⎤

�
𝛿𝛿𝑓𝑓
𝛿𝛿𝑟𝑟
� + �

0
0
−𝑉𝑉
−𝑙𝑙𝑠𝑠𝑉𝑉

�𝜌𝜌𝑟𝑟𝑟𝑟𝑓𝑓 +

⎣
⎢
⎢
⎡
0
1
𝐼𝐼𝑧𝑧
0
0⎦
⎥
⎥
⎤
𝑀𝑀𝑧𝑧𝑧𝑧 (3.1)

14

where: 𝑙𝑙𝑠𝑠 = 𝐾𝐾𝑉𝑉, K is a constant

Table 3.1: Explanation of linear path-tracking vehicle model parameters.

Model

Explanation
𝛽𝛽 Vehicle side slip angle
r Vehicle yaw rate

Δ𝜓𝜓𝑝𝑝 Heading error
𝑒𝑒𝑦𝑦 Path-tracking error
𝐶𝐶𝑓𝑓 Front tire cornering stiffness
𝑙𝑙𝑓𝑓 Distance between CG and front axle
𝐶𝐶𝑟𝑟 Rear tire cornering stiffness
𝑙𝑙𝑟𝑟 Distance between CG and rear axle
M Vehicle mass
V Vehicle velocity
𝑙𝑙𝑠𝑠 Preview distance
𝐼𝐼𝑧𝑧 Vehicle yaw moment of inertia
𝜌𝜌𝑟𝑟𝑟𝑟𝑓𝑓 Reference path curvature

𝑀𝑀𝑧𝑧𝑧𝑧 Yaw moment disturbance
K Preview distance scheduling constant

Figure 3.2: Path-tracking scenario showing the desired path, the vehicle offset distance and

orientation error with respect to the desired path and the preview distance [17].

15

3.4 Disturbance Observer

This section presents a general overview of the disturbance observer (DOB). In

automotive path-tracking applications, this is also referred to as a curvature rejection filter

[17]. In general, the disturbance observer has two main functions: disturbance rejection and

model regulation. To observe these effects, one can first consider a simple input-output

system consisting of a plant (G) with multiplicative model uncertainty (Δ𝑚𝑚) and an external

disturbance (d) applied at the output, as displayed in Figure 3.3. It should be noted that 𝐺𝐺𝑛𝑛

is called the nominal plant. One can then write Equation (3.2) to describe this system, and

further obtain Equation (3.3) by defining the extended disturbance e.

𝑦𝑦 = 𝐺𝐺𝐺𝐺 + 𝑑𝑑 = �𝐺𝐺𝑛𝑛(1 + 𝛥𝛥𝑚𝑚)�𝐺𝐺 + 𝑑𝑑 = 𝐺𝐺𝑛𝑛𝐺𝐺 + (𝐺𝐺𝑛𝑛𝛥𝛥𝑚𝑚𝐺𝐺 + 𝑑𝑑) = 𝐺𝐺𝑛𝑛𝐺𝐺 + 𝑒𝑒 (3.2)

𝑒𝑒 = 𝑦𝑦 − 𝐺𝐺𝑛𝑛𝐺𝐺 (3.3)

Figure 3.3: Sample input-output system with disturbance and model uncertainty [16].

Since the purpose of the DOB is to achieve disturbance rejection and model regulation,

the end goal is to have a system without model uncertainty and external disturbance, which

can be described in Equation (3.4).

𝑦𝑦 = 𝐺𝐺𝑛𝑛𝐺𝐺𝑛𝑛 (3.4)

To determine the input (u) that is necessary to achieve this, one can combine Equation (3.2)

and Equation (3.4), and further apply Equation (3.3) to get the result described in Equation

(3.5).

𝐺𝐺 = 𝐺𝐺𝑛𝑛 −
𝑦𝑦
𝐺𝐺𝑛𝑛

+ 𝐺𝐺 (3.5)

16

It must be noted, however, that the result in Equation (3.5) is not implementable for

the following two reasons: 1) The input u is on both sides of the expression; 2) 1/𝐺𝐺𝑛𝑛 is not

proper since 𝐺𝐺𝑛𝑛 is proper for most physical systems. To make this result implementable,

Equation (3.5) is modified to Equation (3.6) where Q is introduced as a unity gain low-pass

filter of the appropriate order such that 𝑄𝑄/𝐺𝐺𝑛𝑛 is proper.

𝐺𝐺 = 𝐺𝐺𝑛𝑛 −
𝑄𝑄
𝐺𝐺𝑛𝑛
𝑦𝑦 + 𝑄𝑄𝐺𝐺 (3.6)

Equation (3.6) can be represented in the form of the system block diagram shown in Figure

3.4. It should be noted that an additional external input n is added as sensor noise. Using this

block diagram, several transfer functions of interest can be derived as given in Equation 3.7.

⎩
⎪
⎨

⎪
⎧

𝑦𝑦
𝑢𝑢𝑛𝑛

= 𝐺𝐺𝑛𝑛𝐺𝐺
𝐺𝐺𝑛𝑛(1−𝑄𝑄)+𝐺𝐺𝑄𝑄

𝑦𝑦
𝑧𝑧

= 𝐺𝐺𝑛𝑛(1−𝑄𝑄)
𝐺𝐺𝑛𝑛(1−𝑄𝑄)+𝐺𝐺𝑄𝑄

𝑦𝑦
𝑛𝑛

= −𝐺𝐺𝑄𝑄
𝐺𝐺𝑛𝑛(1−𝑄𝑄)+𝐺𝐺𝑄𝑄

 (3.7)

Figure 3.4: The DOB block diagram is shown here. The DOB regulated system within the

dashed box acts like the nominal model 𝐺𝐺𝑛𝑛 and disturbances d are rejected within the

bandwidth of the Q filter [16].

From Equation (3.7), it can be observed that at low frequencies when 𝑄𝑄 = 1, 𝑦𝑦/𝐺𝐺𝑛𝑛 = 𝐺𝐺𝑛𝑛 and

𝑦𝑦/𝑑𝑑 = 0, demonstrating that model regulation and disturbance rejection are both achieved.

Additionally, at high frequencies where 𝑄𝑄 = 0, 𝑦𝑦/𝑛𝑛 = 0, meaning that high frequency sensor

noises can be rejected. It can thus be concluded that this system structure can achieve the

desired effect.

17

In general, to design a DOB, one should construct a unity gain low-pass filter Q and a

nominal plant 𝐺𝐺𝑛𝑛. As discussed previously, the Q filter must be of appropriate order such that

𝑄𝑄/𝐺𝐺𝑛𝑛 is proper. Additionally, the Q filter should also have an appropriate bandwidth to

ensure its performance, as a bandwidth too low will result in poor disturbance rejection and

model regulation, while a bandwidth too high will cause high frequency sensor noises to

enter the system and will also cause stability robustness issues. The nominal or desired plant

model/behavior𝐺𝐺𝑛𝑛 should also be designed carefully as its dynamics must not be too

drastically different from that of the uncertain plant G, otherwise the design will fail to

achieve its goals.

In the case of applying this control structure to the collision avoidance (treated as a

single-lane change here) path-tracking problem, the plant model G can be represented as the

transfer function from front steering angle 𝛿𝛿𝑓𝑓 to path-tracking error 𝑒𝑒𝑦𝑦 as we assume the

vehicle is front-wheel-steer. The external disturbance entering the system in this case is the

reference path curvature as yaw moment disturbance is assumed to be zero. Hence, 𝐺𝐺𝑛𝑛 and

y as displayed in Figure 3.4 are front steering angle 𝛿𝛿𝑓𝑓 and path-tracking error 𝑒𝑒𝑦𝑦 ,

respectively. From the linear path-tracking model in Equation (3.1), one can derive that plant

G is proper and has a relative order of two, which means that the Q filter must be at least

second order to guarantee that 𝑄𝑄/𝐺𝐺𝑛𝑛 is proper. Thus, the Q filter is chosen as a second order

system with unity gain in the form displayed in Equation (3.8). Since the control system can

be speed-scheduled and the path-tracking model in Equation (3.1) includes vehicle speed

and preview distance, system parameters can change as the vehicle moves along the path.

𝑄𝑄 = 𝜔𝜔𝑛𝑛
2

𝑠𝑠2+2𝜉𝜉𝜔𝜔𝑛𝑛𝑠𝑠+𝜔𝜔𝑛𝑛2
 (3.8)

The DOB is usually applied together with an additional feedback controller to smooth out its

operations further. Figure 3.5 displays the system block diagram with this additional

feedback control loop, where C denotes the feedback controller which is designed for the

desired nominal plant model Gn based on the model regulation property of DOB.

18

Figure 3.5: Control system with DOB and feedback controller with the DOB regulated plant

shown within the dashed rectangle [16].

The feedback controller mentioned above can be of any design. We present an

example design that features a speed-scheduled, parameter-space PID controller, the details

of which can be found in [16]. The parameter-space method is discussed in detail in [18]. The

reference input (denoted as r in Figure 3.5) should be zero in this case considering that the

goal of the control system is to eliminate path-tracking error 𝑒𝑒𝑦𝑦. The form of the controller

is presented in Equation (3.9). The controller gains (𝑘𝑘𝑝𝑝,𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑧𝑧) are the parameters to be

tuned. Since the controller is speed-scheduled in this case as well, the tunable parameter set

has four elements: (𝑉𝑉,𝑘𝑘𝑝𝑝,𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑧𝑧) . A D-stability region, as displayed in Figure 3.6, is

established for pole placement. An example of the admissible controller gain region at a

certain scheduled speed is shown in Figure 3.7. During the process of controller gains value

selection, a general rule of thumb is to choose the gains to be as small as possible within the

admissible region so that the control effort can be minimized while the energy efficiency

maximized.

𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑖𝑖
𝑠𝑠

+ 𝑘𝑘𝑧𝑧𝑠𝑠 (3.9)

19

Figure 3.6: D-stability region for desired settling time, desired overshoot and maximum

bandwidth constraints on closed loop system pole locations [16].

Figure 3.7: Admissible control region at a certain speed showing the controller gain space

where D-stability is satisfied [16].

3.5 Simulation Study

Simulation studies are conducted to demonstrate the efficacy of the proposed control

design. A Simulink model is constructed to simulate the motions of the vehicle. The

parameter values used in the simulations are listed in Table 3.2.

20

Table 3.2: Parameter values used in the simulation.

Parameter [unit] Value
𝐶𝐶𝑓𝑓 [N/rad] 3e5
𝑙𝑙𝑓𝑓 [m] 2

𝐶𝐶𝑟𝑟 [N/rad] 3e5
𝑙𝑙𝑟𝑟 [m] 2
M [kg] 3000

𝐼𝐼𝑧𝑧 [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] 5.113e3
𝜔𝜔𝑛𝑛 [rad/sec] 100
ζ [unitless] 0.707

The simulation results for standalone DOB, standalone PID and combined PID and

DOB control systems are displayed in Figure 3.8, Figure 3.9 and Figure 3.10, respectively.

21

Figure 3.8: Single lane change collision avoidance DOB simulation results [16].

22

Figure 3.9: Single lane change collision avoidance PID simulation results [16].

23

Figure 3.10: Single lane change collision avoidance PID+DOB simulation results [16].

It can be observed from Figures 3.8-3.10 that all three simulations display satisfactory

single lane change collision avoidance path-tracking performance. To better compare the

results, Table 3.3 is constructed to record maximum absolute path-tracking error, RMS path-

tracking error, maximum absolute steering angle as well as maximum absolute steering rate.

Table 3.3: Forward motion simulation results evaluation [16].

Parameter DOB PID PID+DOB
Max absolute
path-tracking

0.0071 0.0073 1.3399e-4

RMS path-
tracking error

0.0029 0.0027 4.4357e-5

Max absolute
steering
angle [rad]

0.4692 0.4746 0.4697

Max absolute
steering rate
[rad/sec]

0.6597 2.4348 2.4538

Results in Table 3.3 show that the control system that combines PID and DOB exhibits the

best performance in terms of minimizing path-tracking errors. It is also seen from Figure

3.10 that with the combined DOB and PID control system, the DOB provides the majority of

the control action while the PID controller serves mainly to smooth out the steering input

24

generated by the DOB.

3.6 Conclusions

This chapter reviewed the use of classical controllers along with the DOB method for

tracking a collision avoidance path which was chosen as a single lane change maneuver. The

parameter space method was used to design the classical controller gains, a PID controller

in this case. Simulation results showed the effectiveness of this approach which executes a

single lane change type avoidance if a VRU is detected. A learning controller is presented in

the next chapter as the focus of this research. The classical approach of following a pre-

planned collision avoidance path was presented to show the advantages of the learning

control approach which can adapt easily to different encounter situations between the

vehicle and the VRU.

25

Chapter 4

Deep Reinforcement Learning (DRL) Based Collision

Avoidance

4.1 Introduction

Path planning and collision avoidance algorithms, as very crucial components of the

ADS, largely affect the overall performance of autonomous driving. Unlike traditional car

navigation, autonomous driving path planning must consider not only the overall path

planning from the starting point to the destination but also local collision avoidance along

the path. Therefore, the purpose of this chapter is to present the design of a reliable and

robust path planning and collision avoidance algorithm for ADS which can help to increase

the overall performance of autonomous driving and enhance the SAE autonomous driving

level.

Collision avoidance first requires detection of VRU(s) [11-14] followed by collision

avoidance maneuver planning and maneuver tracking. Currently, there are two major

approaches to design path planning and collision avoidance algorithms. The first method is

the optimization-based approach, which typically treats the path planning and collision

avoidance issue as an optimization problem with constraints and then seeks to solve the

defined problem. Wang et al. approached collision avoidance as a waypoint position

optimization problem, applying the Elastic Band algorithm to iteratively generate a new

collision-free trajectory that maintains a socially acceptable distance from Vulnerable Road

Users (VRUs) [19]. Morsali et al. introduced a Support Vector Machine (SVM)-based

spatiotemporal planning method to compute collision free regions within the

spatiotemporal domain. By integrating this method with the A* path search algorithm and

SVM-based heuristics, an optimal collision-free path was calculated in complex traffic

scenarios [20]. Zhu et al. framed collision-free path searching as an optimization problem on

a quintic spline and utilized a look-up table to enhance computational efficiency [21]. Chen

et al. proposed a spatiotemporal obstacle avoidance algorithm that improves the efficiency

and performance of the hybrid A* algorithm by leveraging a 3D spatiotemporal grid map

26

[22]. However, the major limitations of the optimization approach are its deficiency in real-

time performance caused by computational complexity and its shortage on control

feasibility. The second approach is the machine learning based one, which typically treats

the path planning and collision avoidance problem as a Markov Decision Process (MDP) and

applies reinforcement learning to seek the optimal solution [23-26].

Kendall et al. pioneered the application of the deep-reinforcement-learning (DRL)

framework in autonomous driving, innovatively proposing an end-to-end model structure

for autonomous driving [27]. Yurtsever et al. proposed an innovative hybrid deep-

reinforcement-learning framework to develop Automated Driving Systems (ADS) [28].

Aksjonov et al. proposed a control framework that combines the strengths of both traditional

rule-based approaches and machine learning to develop an autonomous driving system [29].

Furthermore, Makantasis et al. introduced an innovative driving policy based on Double

Deep Q-Networks (DDQN) that is adaptable to mixed driving environments. They conducted

a series of tests to evaluate the algorithm's efficacy across varying levels of market

penetration [30]. Nageshrao et al. integrated DDQN with a short-horizon safety mechanism

to design an autonomous driving system tailored for highway conditions, tested under

various traffic density settings. [31]. Peng et al. developed an end-to-end ADS using a Dueling

Double Deep Q-Network (DDDQN) framework. They validated the efficiency and

effectiveness of this method using The Open Racing Car Simulator (TORCS) [32]. Jaritz et al.

introduced an Asynchronous Actor-Critic (A3C) based method for autonomous driving

which maps RGB images from the front camera to driving actions using a realistic rally racing

game environment for training. The approach demonstrates faster convergence and more

robust performance compared to other DRL based end-to-end methods, indicating its

potential for practical applications in autonomous vehicles [33]. In order to handle critical

pre-accident scenarios in emergency situations, Merola et al. proposed a Deep Q-Network

(DQN) based approach to design ADS and training the system to execute emergency

maneuvers to minimize or avoid damage [34]. Cao et al. introduced a hierarchical

reinforcement and imitation learning (H-REIL) approach for autonomous driving to handle

near-accident scenarios. By integrating a low-level imitation learning controller with a high-

level reinforcement learning controller, their approach demonstrated capability of balancing

27

safety and efficiency[35]. However, a notable disadvantage of the machine learning-based

approach is the instability in model performance under normal traffic conditions due to the

absence of hard-coded safety protocols.

To address the critical challenges outlined earlier, we introduce a novel hybrid

hierarchical DRL framework designed to enhance collision avoidance performance in

autonomous driving in this chapter. This framework uniquely combines a path following

controller with DRL-based collision avoidance algorithms. Under typical VRU-free

conditions, the vehicle employs a low-level path-tracking controller to maintain precise

navigation. However, when VRUs are detected nearby, a high-level DRL collision avoidance

controller is activated, enabling the vehicle to adjust its speed or trajectory to avoid potential

collisions. The primary contribution of this research lies in the seamless integration of

traditional path following control techniques with advanced machine learning-based

collision avoidance strategies. This hybrid approach significantly improves both path

tracking and collision avoidance capabilities, providing a robust foundation for future

research in hybrid DRL based control for autonomous vehicles.

4.2 Methodology

4.2.1 Vehicle Model

The vehicle model we used for model-in-the-loop (MIL) simulation in this chapter is

a simplified linear vehicle model. We combined the linear longitudinal vehicle model with

lateral single-track vehicle model to create this linear enhanced model. Figure 4.1 displays

the geometry of the longitudinal vehicle model. The elements depicted include: 1) 𝐹𝐹𝑎𝑎 =

aerodynamic drag due to headwind at velocity 𝑉𝑉𝑤𝑤𝑖𝑖𝑛𝑛𝑧𝑧; 2) 𝐹𝐹𝑟𝑟 = rolling resistance; 3) 𝜃𝜃 = road

grade; 4) 𝑀𝑀𝑘𝑘 = the gravitational force of the vehicle; 5) 𝐹𝐹𝑔𝑔 = the component of the

gravitational force acting along the slope of the road; 6) 𝐹𝐹𝑥𝑥 = the force exerted by the tires in

the longitudinal direction. The input-output configuration of this model is shown in Figure

4.2, where inputs such as throttle and brake pedal positions, headwind velocity, and road

slope are used to determine the vehicle's longitudinal speed. It should be noted that for

simplification, the model assumes no headwind or road grade. Figure 4.3 details the

28

structure of this model, with Figure 4.3(a) outlining how longitudinal forces translate into

vehicle speed, and Figure 4.3(b) showing how input engine and brake torques are converted

into longitudinal tire force. Table 4.1 enumerates the parameters featured in Figure 3.

Figure 4.1: Longitudinal vehicle model geometry [36].

Figure 4.2: Longitudinal vehicle model input-output structure [36].

29

(a) (b)

Figure 4.3: Detailed components in the longitudinal vehicle model with (a) Longitudinal
forces to longitudinal vehicle velocity calculation and (b) Input torques to longitudinal tire
force calculation [36].

Table 4.1: Longitudinal model parameters [36].

Symbol Parameter
𝐹𝐹𝑥𝑥 Longitudinal tire force
M Vehicle mass

𝑉𝑉𝑥𝑥 Vehicle longitudinal
velocity

X Vehicle longitudinal
position

𝜌𝜌𝑎𝑎 Air density
𝐶𝐶𝑧𝑧 Air drag coefficient

𝐴𝐴𝑓𝑓 Vehicle cross-sectional
area

𝑉𝑉𝑤𝑤𝑖𝑖𝑛𝑛𝑧𝑧 Headwind velocity
𝜃𝜃 Road grade

𝐶𝐶𝑟𝑟 Rolling resistance
coefficient

𝑇𝑇𝑚𝑚 Motor torque
𝑇𝑇𝑏𝑏 Brake torque
𝜂𝜂𝑡𝑡 Transmission efficiency
𝜆𝜆 Gear ratio
𝐼𝐼𝑤𝑤 Wheel moment of inertia
𝜔𝜔 Wheel angular velocity
𝑅𝑅𝜔𝜔 Wheel radius
𝑠𝑠 Longitudinal tire slip

30

Figure 4.4 presents the geometry of the lateral single-track model while Equation 4.1

[17] provides the state-space form of the simplified linear single-track model. The

parameters for this lateral model are demonstrated in Table 4.2. The model inputs include

the steering angles of the front and rear wheels, along with any vehicle yaw disturbances.

The outputs of the model are the vehicle's side-slip angle and yaw rate. For simplification,

this model considers a front-wheel-steering vehicle with no external yaw disturbances,

meaning the primary input is the front wheel steering angle. Furthermore, in this simplified

version, the vehicle's longitudinal speed is assumed to remain constant.

Figure 4.4: Lateral single-track vehicle model geometry [36].

 ��̇�𝛽
�̇�𝑟
� = �

−𝐶𝐶𝑓𝑓−𝐶𝐶𝑟𝑟
𝑀𝑀𝑀𝑀

−1 + 𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓
𝑀𝑀𝑀𝑀2

𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓
𝐼𝐼𝑧𝑧

−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓2−𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟2

𝐼𝐼𝑧𝑧𝑀𝑀

� �𝛽𝛽𝑟𝑟� + �

𝐶𝐶𝑓𝑓
𝑀𝑀𝑀𝑀

𝐶𝐶𝑟𝑟
𝑀𝑀𝑀𝑀

𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓
𝐼𝐼𝑧𝑧

𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟
𝐼𝐼𝑧𝑧

� �
𝛿𝛿𝑓𝑓
𝛿𝛿𝑟𝑟
� + �

0
1
𝐼𝐼𝑧𝑧
�𝑀𝑀𝑧𝑧𝑧𝑧 (4.1)

31

Table 4.2: Lateral model parameters [36].

Symbol Parameter
𝑋𝑋,𝑌𝑌 Earth-fixed frame coordinate
𝑥𝑥, 𝑦𝑦 Vehicle-fixed frame coordinate
𝑉𝑉 Vehicle center-of-gravity (CG) velocity
M Vehicle Mass
𝐼𝐼𝑧𝑧 Vehicle yaw moment of inertia
𝛽𝛽 Vehicle side-slip angle
𝜓𝜓 Vehicle yaw angle
r Vehicle yaw rate

𝑀𝑀𝑧𝑧𝑧𝑧 Yaw disturbance moment
𝛿𝛿𝑓𝑓 , 𝛿𝛿𝑟𝑟 Front & rear wheel steer angle
𝐹𝐹𝑓𝑓 ,𝐹𝐹𝑟𝑟 Front & rear lateral tire force
𝑉𝑉𝑓𝑓,𝑉𝑉𝑟𝑟 Front & rear axle velocity
𝛼𝛼𝑓𝑓 ,𝛼𝛼𝑟𝑟 Front & rear tire slip angle
𝑙𝑙𝑓𝑓 , 𝑙𝑙𝑟𝑟 Distance between vehicle CG and front & rear axle
𝐶𝐶𝑓𝑓 ,𝐶𝐶𝑟𝑟 Front & rear tire cornering stiffness

Figure 4.5: Full vehicle model structure [36].

4.2.2 Low-level PID Pure Pursuit Path Tracking Controller Design

The low-level controller used in this chapter is a PID pure pursuit path tracking

controller which enables accurate path following in normal traffic conditions. This PID path

tracking controller contains a longitudinal velocity controller and a lateral tracking

controller. The longitudinal PID controller primarily manages the vehicle's speed by using

32

the speed differential between the vehicle's current speed and the target speed, as detailed

in Equation 4.2, to produce throttle and brake command. Conversely, the lateral PID

controller is responsible for steering control. It uses the angular difference between the

vehicle’s current trajectory and the desired path direction, outlined in Equation 4.3, to

generate a steering command. Figure 4.6 illustrates the method used to determine the angle

difference for the lateral PID controller. The PID gains (Kp, Ki, Kd) for both the longitudinal

and lateral PID controllers have been manually adjusted to achieve optimal performance

tailored to the vehicle model and CARLA simulator.

𝜀𝜀𝑙𝑙𝑙𝑙𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡𝑢𝑢𝑧𝑧𝑖𝑖𝑛𝑛𝑎𝑎𝑙𝑙 = 𝜈𝜈𝑣𝑣𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑟𝑟 − 𝜈𝜈𝑧𝑧𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟𝑟𝑟𝑧𝑧 (4.2)

 𝜀𝜀𝑙𝑙𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙 = 𝜃𝜃𝑣𝑣𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑟𝑟 − 𝜃𝜃𝑝𝑝𝑎𝑎𝑡𝑡ℎ (4.3)

Figure 4.6: Lateral PID controller path tracking error illustration [36].

4.2.3 High-level DRL Based Collision Avoidance Controller Design

The collision avoidance process for an autonomous vehicle (AV) is a dynamic, ongoing

decision-making task. Initially, the AV identifies the positions, velocities, and trajectories of

surrounding road users. Based on its own location and velocity, the AV then makes quick,

precise decisions to navigate safely around these users. This entire decision-making process

is like a Markov Decision Process (MDP), suggesting that collision avoidance can be

approached as a classic MDP problem. MDPs are useful for modeling and addressing the

uncertainties in traffic environments.

33

To address this MDP, deep reinforcement learning (DRL) is employed to develop an

autonomous driving system designed to optimize decisions to maximize expected rewards

while enhancing safety and efficiency. The fundamental elements of an MDP include states

(S), actions (A), transition probabilities (P), and rewards (r).

• State Space (S): The state space of the model contains a set of states, each representing

specific information about the current traffic environment. There exist four key

components in each state. The first one is the occupancy grid which represented by a 2-

D array. The occupancy grid maps the surrounding obstacles relative to the vehicle. This

grid identifies road users as obstacles within the predefined detection ranges of 20

meters ahead, 5 meters behind, and 7 meters to each side. Different weights are assigned

to each grid cell based on the importance of nearby road users, with higher weights given

to vulnerable road users (VRUs). Figures 4.7 and 4.8 illustrate the occupancy grid for

vehicles with zero and nonzero yaw angles, respectively. The grid uses cross symbols to

denote various elements: white crosses indicate collision-free areas, black crosses mark

potential pedestrian collisions, red denotes the vehicle's geometric center, and blue

represents the vehicle’s coordinates. The second component is the ego vehicle’s data

which includes current information about the ego vehicle such as its location, orientation,

and velocity. This component is crucial for dynamic decision-making and navigation. The

third component is path tracking information which includes target tracking waypoints.

The last component is obstacle Information which contains the time-to-collision zones

(TTZ) for both vehicles (TTZ_v) and pedestrians (TTZ_p), as well as the difference

between these zones (TTZ_diff), providing a measure of imminent threat from different

obstacles.

• Action Space (A): The action space contains a variety of discrete actions that the ego

vehicle can execute under different traffic situations. Each action is defined as a tuple of

control commands, including steering, throttle, and brake inputs. The design of the action

space is tailored to meet the specific demands of various test scenarios, ensuring that the

vehicle can adaptively respond to different driving conditions.

• Transition Model (P): The transition model is an important component of the traffic

simulation framework, designed to project next states based on the execution of specific

34

actions at the current state. In this chapter, the transition model is separated into two

major components. The first part is a SIMULINK vehicle model which is used to simulate

the dynamics of the ego vehicle, providing a detailed analysis of its motion based on the

input actions. The specifics of the vehicle model, including its operational parameters and

integration into the simulation environment have been presented above in the vehicle

model sections of this chapter. The second part is the CARLA simulator which is used to

replicate the traffic environment and the movements of other road users. Detailed

discussions on the functionalities and contributions of the CARLA simulator to the overall

traffic simulation are provided in the case study section.

• Reward (r): The reward function calculates immediate rewards based on the transition

from the current state to the next after an action is executed. The detailed discussions of

rewards function design are also provided in the case study section.

Figure 4.7: Occupancy grid 2-D array with zero yaw angle [36].

Figure 4.8: Occupancy grid 2-D array with 30° yaw angle [36].

35

To enhance performance, the Double Deep Q-Network (DDQN) method is utilized since

it reduces the overestimation of action values common in DQN by separating action selection

from target Q-value generation. Unlike traditional optimization or supervised learning

methods, DDQN directly learns from environmental interactions, making it highly effective

for autonomous driving tasks. This approach not only handles high-dimensional inputs like

the occupancy grid but also learns without the need for pre-labeled data, offering a

significant advantage over other collision avoidance techniques. A comparison of traditional

and DDQN methods is detailed in Table 4.3, illustrating the benefits of the DDQN approach

in autonomous vehicle navigation.

Table 4.3: Comparison to traditional optimization-based approach [36].

Approaches Pros Cons

Elastic Band [19]

1. Easy to implement.
2. Can avoid getting stuck at
local minimum
3. Flexibility in local path
modification.

1. Path shape may be irregular
especially in complex environment.
2. Computational complexity may
increase with number of obstacles.
3. Path may be control infeasible

Potential Field related

1. Easy to implement.
2. Can achieve real time
performance.
3. Path easy to visualize and
understand.

1. Sometimes stuck at local minimum,
especially in complex environment.
2. Oscillations may occur around
obstacles.
3. Path may be control infeasible.

SVM based optimization [20]

1. Path Planning in Spatial-
Temporal region.
2. Can find optimal, efficient
and control feasible path.

1. Sometimes stuck at local minimum,
especially in complex environment.
2. Oscillations may occur around
obstacles.
3. Path may be control infeasible.

Other Optimization Based
Method [11], [35]

1. Can generate control
feasible and optimal (either
time or fuel efficient) path.
2. Can adapt to different
traffic scenarios.

1. Computational inefficient and may
not achieve real time performance.
2. Performance of the optimization
might be sensitive to the tuning of
parameters.

Proposed DDQN Based ADS

1. Learning ability.
2. Model can achieve real
time performance.
3. Can adapt to different
traffic scenarios.

1. Training requires good
computational resources.
2. Performance of the model depends
on training data quality.

36

Compared to other DRL algorithms, DDQN offers distinctive advantages. Currently,

there are primarily two DRL based approaches: policy-based and value-based methods.

Policy-based methods including Asynchronous Advantage Actor Critic (A3C) and Proximal

Policy Optimization (PPO) concentrate on directly optimizing the policy that generates the

agent's actions, aiming to enhance expected long-term rewards. These methods excel in

environments with high-dimensional or continuous action spaces, offering robustness and

stability during training. However, they tend to be less training-efficient than value-based

methods. This inefficiency comes from their need to interact more frequently with the

environment and their requirement to discard old data after policy updates, which can slow

the learning process. Value-based methods, such as DDQ and DDQN, focus on estimating the

values of actions (Q value) from each state, thereby indirectly optimizing a policy by selecting

actions that maximize these estimated values. Unlike policy-based methods, these methods

are off-policy which allows for the reuse of previously generated data, significantly

improving training efficiency. This attribute makes value-based methods particularly useful

in fields like collision avoidance because they can quickly adapt to dynamic traffic

environments. Additionally, Deep Deterministic Policy Gradient (DDPG) merges elements of

both policy-based and value-based approaches. It employs a policy network for action

generation and a value network for action evaluation and is suitable for continuous action

spaces. However, DDPG is complex to implement and highly sensitive to hyperparameter

settings, which make it less ideal for complicated traffic environment simulation. Therefore,

in this chapter, DDQN is selected as the preferred DRL framework for developing ADAS for

collision avoidance.

Figure 4.9 shows the neural network architecture utilized in the DDQN. This network

contains four fully connected hidden layers: three layers each containing 128 units, followed

by a final layer with 32 units. The network processing starts with the flattening of the

occupancy grid. Then the flattened occupancy grid is sequentially fed through the first three

128-unit layers. After processing through these layers, additional sensor data including the

ego vehicle’s status, path tracking waypoints, and information of other road users are

integrated with the output from the third layer and fed as input into the final 32-unit layer.

This architectural is intentional, aiming to preserve important information that might be lost

37

in earlier layers, thus ensuring the network considers vital details in its outputs.

Furthermore, the detailed workflow of the DDQN algorithm is demonstrated in Table 4.4.

The DDQN employs a dual neural network structure to optimize its decision-making

capabilities. The online network Q is responsible for generating optimal actions for current

states. Concurrently, the target network Q� , used for gradient descent updates its parameters

only after specified intervals. This staggered updating helps stabilize the training process by

reducing rapid shifts in learning targets. Training data generated from the SIMULINK vehicle

model and the CARLA traffic environment are stored in a replay buffer which breaks the

correlation between consecutive steps and decreases variance in model training process.

This method enhances the efficiency of data utilization and guarantees a more balanced and

comprehensive sampling from the replay buffer throughout the training phases. Key

implementation details for the DDQN training include: 1. Learning Rate which is set at 0.01

to moderate the speed of learning. 2. Initial Exploration Probability which starts at 1,

allowing for maximum exploration initially. 3. Decay Period such that the exploration rate

decays over 200,000 steps, gradually shifting focus from randomly exploration towards

exploiting learned strategies. 4. Final Exploration Probability which is reduced to 0.05 at the

end, balancing the need for exploration with exploitation. 5. Reward Discount Factor which

is fixed at 0.9 and this parameter prioritizes immediate over distant rewards, affecting the

strategy’s short-term focus. 6. Episode Limit where each training episode is capped at 4,000

steps to keep the training duration per episode manageable.

Figure 4.9: DDQN framework neural network structure [36].

38

Table 4.4: DDQN algorithm flowchart [36].

Algorithm 1
1: Initialize replay memory 𝐷𝐷
2: Initialize target network 𝑄𝑄� and Online Network 𝑄𝑄 with random weights 𝜃𝜃
3: for each episode do
4: Initialize traffic environment
5: for t = 1 to T do
6: With probability 𝜖𝜖 select a random action 𝑎𝑎𝑡𝑡
7: Otherwise select 𝑎𝑎𝑡𝑡 = maxa𝑄𝑄∗(𝑠𝑠𝑡𝑡,𝑎𝑎;𝜃𝜃)
8: Execute 𝑎𝑎𝑡𝑡 in CARLA and extract reward 𝑟𝑟𝑡𝑡 and next state 𝑠𝑠𝑡𝑡+1
9: Store transition (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in 𝐷𝐷
10: if t mod training frequency == 0 then
11: Sample random minibatch of transitions (𝑠𝑠𝑗𝑗 , 𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗+1)) from D
12: Set 𝑦𝑦𝑗𝑗 = 𝑟𝑟𝑗𝑗 + 𝛾𝛾maxa𝑗𝑗+1𝑄𝑄�(𝑠𝑠𝑗𝑗+1, argmaxa𝑗𝑗+1𝑄𝑄(𝑠𝑠𝑗𝑗,𝑎𝑎𝑗𝑗+1;𝜃𝜃);𝜃𝜃)

13: for non-terminal 𝑠𝑠𝑗𝑗+1
14: or 𝑦𝑦𝑗𝑗 = 𝑟𝑟𝑗𝑗 for terminal 𝑠𝑠𝑗𝑗+1
15: Perform a gradient descent step to update 𝜃𝜃
16: Every N steps reset 𝑄𝑄� = 𝑄𝑄
17: end if
18: Set 𝑠𝑠𝑡𝑡+1= 𝑠𝑠𝑡𝑡
19: end for
20: end for

4.3 Results

To validate the effectiveness of the proposed routine, we introduce two pedestrian

collision avoidance scenarios designed for model-in-the-loop (MIL) evaluation. The testing

is conducted using the CARLA simulator which provides a realistic traffic environment

coupled with the SIMULINK vehicle dynamics model to simulate vehicle behavior accurately.

This setup enables a comprehensive assessment of the routine under controlled, yet realistic

traffic conditions, ensuring a robust evaluation of its capabilities.

39

4.3.1 Test Case 1

The first traffic scenario, illustrated in Figure 4.10, involves a pedestrian entering the

crosswalk as a vehicle approaches. In this scenario, the crosswalk becomes a potential

collision zone, requiring the vehicle to gradually slow down and stop before reaching the

zone's edge. It's important to note that the DRL module's action space in this scenario will be

limited to throttle and brake actions as the situation only necessitates a longitudinal motion

maneuver. Additionally, to enhance the learning efficiency of the DRL module, several

exemplary slowing down speed profiles are provided. These profiles help guide the DRL

module by reducing its reliance on random action selection, significantly shortening the

model training time.

Figure 4.11 illustrates the progression of step rewards as the number of training

episodes increases. The rewards increase with the episodes and tend to stabilize after 1000

episodes, suggesting convergence and the successful identification of the optimal policy. This

particular test case is relatively straightforward and allows for a scenario where even

randomly generated actions stand a reasonable chance of completing the driving task

successfully. Consequently, the reward progression shows limited improvement across

training episodes after the initial period, reflecting the simplicity of the task. Nonetheless,

the proposed deep reinforcement learning (DRL) model proves its effectiveness by

consistently enabling the vehicle to successfully complete test cases, demonstrating its

robust capability in typical traffic scenarios.

Figure 4.10: Traffic Scenario 1 setup [36].

40

Figure 4.11: Scenario 1 step reward vs. training episodes [36].

Figure 4.12 displays the evolution of the Time-To-Collision Zone (TTZ) for both the

pedestrian and the vehicle. The three colored arcs represent the boundaries of the severity

levels, with level one being the most critical and requiring immediate actions to avoid likely

collisions, and level three being the least urgent such that the vehicle has enough time and

space to react to potential collision risks. The consistently maintained TTZ of over four

seconds for both the pedestrian and the vehicle indicates a low likelihood of collision, further

validating the efficacy of the optimal policy. Scenario 1 speed following is shown in Figure

4.13.

Figure 4.12: Scenario 1 TTZ progression [36].

41

Figure 4.13: Scenario 1 speed following performance. [36].

4.3.2 Test Case 2

Figure 4.14 illustrates the second traffic scenario where a pedestrian unpredictably

enters the road as the vehicle approaches, creating a potential collision risk. In this scenario,

the pedestrian is considered a moving obstacle, and the vehicle must maneuver around the

pedestrian by steering to avoid a collision. Consequently, the action space for the DRL

module in this scenario expands to include not only longitudinal controls, such as throttle

and brake inputs, but also steering actions.

Figure 4.14: Traffic Scenario 2 setup [36].

42

Figure 4.15 tracks the reward progression during the training of scenario 2. Rewards

increase with the completion of more episodes and eventually stabilize at a high level,

indicating successful optimization of the policy. Specifically, the convergence of the Time-To-

Collision Zone (TTZ) reward indicates that the agent effectively learns to avoid collisions

with pedestrians, as further evidenced by Figure 4.16 which shows low collision risk.

Additionally, the convergence of steering rewards suggests that the agent consistently

selects appropriate steering angles during maneuvers. Moreover, as demonstrated in Figure

4.17, the agent's behavior includes slowing down as it approaches the pedestrian and then

accelerating once the collision risk has passed. This reaction pattern is desirable for safely

handling such maneuvers. The link to the demo video of Scenario 2 is provided here:

https://youtu.be/CmGtaAjZ_x4. This video serves to further illustrate the practical

application and effectiveness of the DRL model in real-world-like simulations, showcasing

its capability to navigate complex traffic scenarios safely and efficiently.

(a) (b) (c)

Figure 4.15: Training reward vs. episodes: (a) Step reward; (b) TTZ reward; (c) Steering

reward [36].

https://youtu.be/CmGtaAjZ_x4

43

Figure 4.16: Scenario 2 TTZ progression [36].

Figure 4.17: Scenario 2 vehicle speed progression [36].

44

4.4 Conclusions

Effectively planning a trajectory for connected autonomous vehicles that is both

collision-free and control-feasible can help increase the vehicle's SAE autonomous driving

level, thereby reducing car accidents caused by human error. This chapter proposed an

innovative hybrid hierarchical autonomous driving controller which integrates DRL based

local collision avoidance controller with global PID path following. Specifically, the DRL

based collision avoidance component employs a Double Deep Q-Network (DDQN)

framework to train autonomous driving agents. The agents are trained to not only prevent

collisions but also maintain a socially acceptable distance from Vulnerable Road Users

(VRUs) when potential collision may happen. The PID based pure pursuit controller ensures

the vehicle to perform precision path tracking on a pre-calculated optimal path under

standard traffic conditions.

The proposed method was evaluated by model-in-the-loop (MIL) simulations which

demonstrated superior performance compared to other methods. It is mainly because the

proposed method took the strengths of both model-based modular control and machine

learning-based collision avoidance. Under normal traffic conditions, hard coded protocol and

high-performance path tracking controller can guarantee the precision navigation. Under

emergency traffic condition, flexible DRL based collision avoidance controller can perform

collision avoidance to dodge the pedestrian by either decelerating and/or changing the path.

In addition, the application of the MIL approach enables comprehensive testing of the

proposed method across a wide array of edge cases, which makes results more convincing

and persuasive. However, there are still some limitations of the proposed method. The

majority of shortcoming of the proposed method came from its hybrid structure. Under

certain traffic conditions, the switch from the PID-based path tracking controller to the

emergency DRL-based collision avoidance controller can result in abrupt maneuvers. These

sudden changes in movement may cause discomfort to passengers. Moreover, the real-time

performance of the proposed algorithm under different traffic conditions requires further

study.

In general, this chapter proposed a novel approach to designing the ADS which not

only fulfill the gaps in the autonomous driving path planning research in hybrid controller

45

but also offers insight for future study. The future research should focus more on smooth

transition between different controllers and improving real-time performance under all

traffic conditions. Moreover, the proposed method requires further testing and evaluation

using hardware-in-the-loop (HIL) and vehicle-in-virtual environment (VVE) simulations.

The details of vehicle-in-virtual environment implementation are presented in the next

chapter.

46

Chapter 5

Vehicle-in-Virtual-Environment (VVE)

5.1 Introduction

The typical development process for ADAS systems employed by OEMs generally

follows these sequential steps: 1) extensive model-in-the-loop (MIL) simulation; 2)

hardware-in-the-loop (HIL) testing; 3) proving ground testing; and 4) public road testing. As

testing progresses, increasing levels of hardware and realism are introduced into the system.

For instance, model-in-the-loop (MIL) is a purely virtual simulation tool, detailed in [38],

while hardware-in-the-loop (HIL) testing begins to incorporate physical components, as

discussed in [37-38]. Both MIL and HIL simulations rely on validated vehicle models with

varying levels of fidelity that incorporate longitudinal [41], lateral [42], and vertical

dynamics [43]. However, the VVE approach eliminates the need for these models since it uses

the actual vehicle.

Public road testing, as described, is not only expensive but also cost-ineffective, as

encountering rare and extreme scenarios may require millions of miles of driving. Moreover,

this type of testing inherently involves other road users as involuntary participants, raising

significant safety concerns. To address these issues, this chapter introduces the vehicle-in-

virtual-environment (VVE) method as an intermediate step before public road deployment.

The VVE method offers the realism of actual vehicle dynamics combined with the safety of a

controlled testing environment. It also enables the safe testing of rare traffic scenarios

without requiring extended periods of public road testing, as these scenarios can easily be

replicated in a virtual environment.

One area where the VVE method is particularly advantageous is in vehicle-to-

pedestrian (V2P) communication for enhancing Vulnerable Road User (VRU) safety. V2P

communication involves the exchange of information between vehicles and pedestrians to

promote traffic safety. Through various communication protocols, information can be

transmitted between vehicles and mobile devices carried by pedestrians, such as cell phones.

47

This enables drivers to anticipate the presence of pedestrians in advance, allowing them to

take preventive actions and avoid potential traffic accidents.

5.2 Methodology

5.2.1 VVE System Structure

The VVE architecture is illustrated in Figure 5.1. The real vehicle operates in a secure,

open area like a parking lot, with its movements being synchronized with a virtual vehicle in

a highly realistic, 3D-rendered virtual environment that can be easily adjusted. The real

vehicle's onboard sensors are replaced by virtual sensor inputs generated from the virtual

environment, reflecting the perspective of the synchronized virtual vehicle. This setup

allows the control unit on the real vehicle to respond to traffic scenarios within the virtual

environment, calculating control commands accordingly. These commands are then

executed by the real vehicle, with its movements being mirrored back into the virtual vehicle,

thus closing the feedback loop.

Figure 5.1: Illustration of VVE Architecture [44].

48

Our current implementation architecture of the VVE system is demonstrated in

Figure 5.2 with the components onboard our test vehicle shown in Figure 5.3. The real

vehicle is equipped with an RTK GPS unit (OxTS xNAV500) that includes differential

antennas, providing accurate position and heading information even when the vehicle is

stationary. This data is received and processed by the onboard control unit, the dSpace

microautobox (MABX) electronic control unit, and then transmitted to the onboard

simulation computer which runs a CARLA-based virtual environment built on the Unreal

Engine, via the Ethernet UDP Protocol.

Figure 5.2: Implemented VVE Architecture [44].

The virtual environment in our implementation replicates the Linden area in

Columbus, Ohio, where a recent autonomous shuttle deployment occurred [45]. Upon

receiving the real GPS data, the virtual environment performs frame transformation and

conversion operations to synchronize the movements of the virtual vehicle with those of the

real vehicle. Virtual sensors within the environment gather measurements and transmit this

data back to the MABX electronic control unit via Ethernet UDP Protocol. It's important to

note that data from virtual perception sensors such as radar and Lidar are transmitted

directly to the MABX electronic control unit while data from virtual localization sensors like

GPS positions require inverse frame transformation and conversion operations before being

49

sent back. The MABX electronic control unit then uses this information to generate actuator

signals which control the real vehicle via a CAN bus connection. The real-virtual frame

transformation and conversion operations are crucial for ensuring precise motion

synchronization between the real and virtual vehicles and will be discussed in detail in a

separate section.

Figure 5.3: AV used for VVE implementation [44].

5.2.2 Frame Transformation/Conversion for Motion Synchronization

As highlighted in the previous section, frame transformation and conversion

operations are essential for achieving accurate motion synchronization between the real and

virtual vehicles. Therefore, this section outlines the procedure we used to accurately

represent real-world motions within the virtual environment. Motion synchronization

generally begins at a specific time, referred to as the ‘reset time,’ during which the virtual

vehicle's location and heading are initialized to a predetermined set of values, and the real

vehicle's location and heading are recorded for future reference. As the real vehicle moves,

the changes in its location and heading relative to the reset time are subjected to a series of

frame transformation and conversion operations. These operations adjust the real-world

changes so that they are accurately represented in the virtual environment's frame of

reference, thereby achieving motion synchronization. It is important to note that once the

position of the vehicle's center of gravity and its heading are determined through the frame

transformation and conversion process, the coordinates of the entire vehicle body can be

50

reconstructed accordingly. The frame transformation and conversion process involve

several components, each of which will be detailed in the following paragraphs.

The first component of the process is a frame conversion operation illustrated in

Figure 5.4. The OxTS GPS in the vehicle used provides the longitude, latitude and heading

angle data in degrees, where the heading angle is recorded in the range of -180 deg and 180

deg. Converting the longitude and latitude data into unit of meter, one can construct a

coordinate frame, namely the real vehicle (𝐹𝐹𝑟𝑟) frame, as displayed in the left-hand side of

Figure 5.4. It should be noted that the positive X-axis in this frame is assumed to be aligned

with positive latitude direction, where zero heading angle corresponds to. It should also be

noted that the positive heading angle in this frame is defined as clockwise (CW) in

correspondence to the heading angle outputted by the OxTS GPS unit. In order to

accommodate frame transformation operations in other components of the process, a new

frame named GPS (𝐹𝐹𝑔𝑔) frame is constructed as displayed in the right-hand side of Figure 5.4.

In this 𝐹𝐹𝑔𝑔 frame, zero heading is defined to be along the positive X-axis and positive heading

angle is in the counterclockwise (CCW) direction. The frame conversion can thus be carried

out as follows:

�
𝑋𝑋𝑔𝑔 = 𝑋𝑋𝑟𝑟
𝑌𝑌𝑔𝑔 = −𝑌𝑌𝑟𝑟

𝜓𝜓𝑔𝑔 = −𝑚𝑚𝑚𝑚𝑑𝑑(𝜓𝜓𝑟𝑟 + 360,360)
 (5.1)

Figure 5.4: Frame transformation/conversion component 1: conversion between 𝐹𝐹𝑟𝑟 frame

and 𝐹𝐹𝑔𝑔 frame [45].

The second component of the process is a frame transformation operation illustrated

in Figure 5.5. The 𝐹𝐹𝑔𝑔 frame is the same as described in Figure 5.4. At reset time t0, an

51

intermediate (𝐹𝐹) frame is created at the vehicle location with positive X-axis pointing at zero

heading direction and positive heading defined in the CCW direction. As the vehicle moves

to a new location at time t1, its location and heading can be represented in the 𝐹𝐹 frame as

illustrated in Equation 5.2. It should be noted that set (𝑋𝑋𝑔𝑔0,𝑌𝑌𝑔𝑔0,𝜓𝜓𝑔𝑔0) and set (𝑋𝑋𝑔𝑔1,𝑌𝑌𝑔𝑔1,𝜓𝜓𝑔𝑔1)

can be obtained by using Equation 5.1 on vehicle states at the reset time and at current time,

respectively.

�
𝜓𝜓1 = 𝜓𝜓0 + 𝜓𝜓𝑔𝑔1 − 𝜓𝜓𝑔𝑔0

�𝑋𝑋1𝑌𝑌1
� = �𝑋𝑋0𝑌𝑌0

� + 𝑅𝑅𝐹𝐹𝑔𝑔→𝐹𝐹 �
𝑋𝑋𝑔𝑔1 − 𝑋𝑋𝑔𝑔0
𝑌𝑌𝑔𝑔1 − 𝑌𝑌𝑔𝑔0

�
 (5.2)

where: 𝑅𝑅𝐹𝐹𝑔𝑔→𝐹𝐹 = �
𝑐𝑐𝑚𝑚𝑠𝑠 (𝜓𝜓𝑔𝑔0) 𝑠𝑠𝑠𝑠𝑛𝑛(𝜓𝜓𝑔𝑔0)
−𝑠𝑠𝑠𝑠𝑛𝑛 (𝜓𝜓𝑔𝑔0) 𝑐𝑐𝑚𝑚𝑠𝑠(𝜓𝜓𝑔𝑔0)�.

Figure 5.5: Frame transformation/conversion component transformation between 𝐹𝐹𝑔𝑔 frame

and 𝐹𝐹 frame [45].

The third component of the process is another frame conversion operation displayed

in Figure 5.6. The coordinate frame used in the virtual environment, named as the 𝐹𝐹𝑖𝑖 frame,

is shown on the right-hand side of Figure 5.6, where the initial location and heading of the

virtual vehicle is defined at reset time t0. An additional coordinate frame, named the vehicle

(𝐹𝐹𝑣𝑣) frame, is defined as shown on the left-hand side of Figure 5.6, with zero heading pointing

52

in the positive X-axis direction and positive heading angle in the CCW direction. The frame

transformation operation can thus be carried out as follows:

 �
𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑣𝑣
𝑌𝑌𝑖𝑖 = −𝑌𝑌𝑣𝑣
𝜓𝜓𝑖𝑖 = −𝜓𝜓𝑣𝑣

 (5.3)

Figure 5.6: Frame transformation/conversion component 3: conversion between 𝐹𝐹𝑣𝑣 frame

and 𝐹𝐹𝑖𝑖 frame [45].

The final component of the process is illustrated in Figure 5.7. This frame

transformation procedure connects the previously discussed intermediate 𝐹𝐹 frame and

vehicle 𝐹𝐹𝑣𝑣 frame. The location and heading of the vehicle at time t1 can be represented in the

𝐹𝐹𝑣𝑣 frame as illustrated in Equation 5.4. It should be noted that the set (𝑋𝑋𝑣𝑣0,𝑌𝑌𝑣𝑣0,𝜓𝜓𝑣𝑣0) can be

obtained by using Equation 5.3 on the initial position and heading of the virtual vehicle

defined in the Fc frame. Once (𝑋𝑋𝑣𝑣1,𝑌𝑌𝑣𝑣1,𝜓𝜓𝑣𝑣1) set is obtained from Equation 5.4, Equation 5.3

can be applied again to represent the current vehicle location and heading information in the

Fc frame, which will complete the motion synchronization procedure.

 �
𝜓𝜓𝑣𝑣1 = 𝜓𝜓𝑣𝑣0 + 𝜓𝜓1 − 𝜓𝜓0

�𝑋𝑋𝑣𝑣1𝑌𝑌𝑣𝑣1
� = �𝑋𝑋𝑣𝑣0𝑌𝑌𝑣𝑣0

� + 𝑅𝑅𝐹𝐹→𝐹𝐹𝑣𝑣 �
𝑋𝑋1 − 𝑋𝑋0
𝑌𝑌1 − 𝑌𝑌0

� (5.4)

53

where: 𝑅𝑅𝐹𝐹→𝐹𝐹𝑣𝑣 = �
𝑐𝑐𝑚𝑚𝑠𝑠 (𝜓𝜓𝑣𝑣0) −𝑠𝑠𝑠𝑠𝑛𝑛(𝜓𝜓𝑣𝑣0)
𝑠𝑠𝑠𝑠𝑛𝑛 (𝜓𝜓𝑣𝑣0) 𝑐𝑐𝑚𝑚𝑠𝑠(𝜓𝜓𝑣𝑣0) �.

Figure 5.7: Frame transformation/conversion component transformation between 𝐹𝐹 frame

and 𝐹𝐹𝑣𝑣 frame [45].

5.2.3 V2P System Structure

To illustrate the multi-actor capabilities of the proposed VVE approach, a Vehicle-to-

VRU communication is implemented. The system architecture is displayed in Figure 5.8. The

pedestrian carries a mobile phone equipped with onboard IMU and GPS sensors. A mobile

application, adapted from [46], is implemented on the phone, where the GPS location and

heading of the pedestrian are broadcasted as part of personal safety messages (PSM) via

Bluetooth low-energy (BLE) connection. A Bluetooth reception board listens to the PSM and

transmits pedestrian motion information to the virtual environment via Ethernet connection

between the board and the simulation computer onboard the real vehicle. Frame

transformation/conversion operations like those described in the previous section are

carried out in the virtual environment to synchronize the virtual pedestrian motions to the

real pedestrian motions. With this architecture, it is possible to initialize virtual pedestrian

position and orientation in the virtual environment such that traffic testing scenarios can be

54

constructed, while the real pedestrian operates in a safe space out of the harm’s way,

ensuring the safety of the test. Figure 5.9 demonstrates one of such possible test setups.

Figure 5.10 presents the information flow of our VVE V2P implementation.

Figure 5.8: Implemented Vehicle-to-VRU architecture [44].

Figure 5.9: One possible V2P test setup with VVE method. The arrow directions represent

the actors’ directions of travel in the real (red) and the virtual (blue) world [45].

55

Figure 5.10: VVE V2P information flow [45].

5.3 Results

The capability of real-virtual vehicle motion synchronization using the proposed VVE

method was tested with the setup shown in Figure 5.11. In this setup, a screen inside the

vehicle is connected to the simulation computer, displaying the virtual vehicle's motion

within the virtual environment while the real test vehicle operates in an open parking lot.

The results of this testing are presented in Figure 5.12, where the motion trajectory of the

real vehicle is plotted on the real-world coordinate frame, and the corresponding virtual

vehicle's motion trajectory is plotted in the virtual environment. The results demonstrate

that satisfactory synchronization between the real-world and virtual-world motions has

been achieved.

Figure 5.11: VVE real-virtual motion synchronization [45].

56

Figure 5.12: VVE motion synchronization test results: (a) Motion trajectory in the real world;

(b) Motion trajectory in the virtual world [45].

To demonstrate the Vehicle-to-VRU communication capability with the VVE method,

the test is conducted with the setup displayed in Figure 5.14. The virtual pedestrian is

spawned in the virtual environment and the initial position and orientation is set in the

virtual environment in relation to the pose of the virtual vehicle. The real pedestrian walks

in the vicinity of the real test vehicle while holding the mobile phone with the V2P safety

application enabled. The position and heading of the real pedestrian are sent to the virtual

environment via Bluetooth connection and after frame transformation/conversion

operations, the location and heading of the virtual pedestrian are updated accordingly. It

should be noted that the virtual pedestrian location and heading can be easily reset in the

virtual environment, so that the real pedestrian can operate at a safe distance from the test

vehicle and in a direction that does not cross path with the test vehicle. Such capability is

illustrated in Figure 5.15 where the real pedestrian is walking behind the test vehicle while

57

the virtual pedestrian is walking in front of the virtual vehicle.

Figure 5.13: VVE virtual sensor data: (a) RGB camera; (b) LiDAR (figure not to scale) [45].

5.4 Conclusions

This chapter introduced a novel approach called Vehicle-in-Virtual-Environment

(VVE) for the safe, efficient, and cost-effective development, demonstration, and evaluation

of ADAS and Connected Autonomous Driving (CAD) systems. The VVE method synchronizes

the movements of a real test vehicle, operating in a secure environment, with those of a

virtual vehicle embedded in a realistic 3D virtual environment. This setup allows for the easy

creation and testing of various traffic scenarios. The paper details the implementation of this

method with a focus on the frame transformation and conversion operations that ensure

precise motion synchronization. Additionally, a Vehicle-to-Vulnerable Road User (VRU)

communication setup is implemented to showcase the VVE method's capability to handle

58

multi-actor interactions.

Figure 5.14: V2P connectivity in VVE test setup [45].

Figure 5.15: Safe operation of V2P connectivity test with (a) Virtual pedestrian walks in front

of the virtual vehicle; (b) Real pedestrian walks behind the real test vehicle [45].

59

Chapter 6

Future Work

In conclusion, the rapid urbanization and increase in privately owned vehicles have

exacerbated traffic congestion and car accidents, posing significant challenges for modern

cities. Autonomous driving systems (ADS) offer a promising solution to mitigate these issues

by reducing the human errors responsible for a substantial number of accidents. However,

the current methods for testing and evaluating these systems, including Model-in-the-Loop

(MIL) and Hardware-in-the-Loop (HIL) simulations, are limited and can lead to unsafe public

road deployments, eroding public trust. To address these challenges, the Vehicle-in-Virtual-

Environment (VVE) method is introduced as a more effective approach. This method allows

for safe, efficient, and realistic testing of autonomous driving functions by synchronizing real

vehicle motions with virtual scenarios.

In the first year of our project, we focused primarily on using the VVE method to

enhance pedestrian safety. Our research began with the analysis and simulation of key

pedestrian crash scenarios identified by the Fatality Analysis Reporting System (FARS). We

then implemented RGB camera-based detection of vulnerable road users (VRUs) to

accurately identify pedestrians around the vehicle during navigation. A Disturbance

Observer (DOB)-integrated PID path tracking controller was also introduced for precise and

efficient path tracking. Additionally, we developed a deep reinforcement learning (DRL)-

based collision avoidance framework to handle emergency situations. The VVE method was

then employed to test and evaluate these autonomous vehicle functions related to pedestrian

safety.

Looking ahead to the second year, our focus will shift to improving bicyclist safety.

Compared to pedestrians, bicyclists move at higher speeds and are more prone to collisions,

necessitating even greater caution in our approach. This year, we reviewed extensive

literature on Lidar data processing and trajectory prediction for VRUs, laying the

groundwork for our upcoming efforts. In the second year of the project, we will work on

60

implementing these findings. Also, we will have a particular focus on developing robust and

delay-tolerant trajectory control. This will involve the VVE method for testing and evaluation,

ensuring that the calculated collision-free vehicle trajectories—whether they require

slowing down, braking, or steering—are executed with precision and safety.

61

References

[1] World Health Organization, Global status report on road safety 2015. Geneva: World
Health Organization, 2015. Accessed: Oct. 24, 2023. [Online]. Available:
https://iris.who.int/handle/10665/189242

[2] “813428.pdf.” Accessed: Aug. 25, 2024. [Online]. Available:
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813428

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” Oct. 22, 2014, arXiv: arXiv:1311.2524.
doi: 10.48550/arXiv.1311.2524.

[4] R. Girshick, “Fast R-CNN,” Sep. 27, 2015, arXiv: arXiv:1504.08083. doi:
10.48550/arXiv.1504.08083.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks,” Jan. 06, 2016, arXiv: arXiv:1506.01497. doi:
10.48550/arXiv.1506.01497.

[6] P. Sun et al., “Sparse R-CNN: End-to-End Object Detection with Learnable Proposals,”
Apr. 26, 2021, arXiv: arXiv:2011.12450. doi: 10.48550/arXiv.2011.12450.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-
Time Object Detection,” May 09, 2016, arXiv: arXiv:1506.02640. doi:
10.48550/arXiv.1506.02640.

[8] Q. Liu, H. Ye, S. Wang, and Z. Xu, “YOLOv8-CB: Dense Pedestrian Detection Algorithm
Based on In-Vehicle Camera,” Electronics, vol. 13, no. 1, Art. no. 1, Jan. 2024, doi:
10.3390/electronics13010236.

[9] G. Jocher, A. Chaurasia, and J. Qiu, Ultralytics YOLO. (Jan. 2023). Python. Accessed: Aug.
26, 2024. [Online]. Available: https://github.com/ultralytics/ultralytics

[10] “CARLA - v20 carla_v20,” Roboflow. Accessed: Aug. 26, 2024. [Online]. Available:
https://universe.roboflow.com/alec-hantson-student-howest-be/carla-
izloa/dataset/20

[11] S. Muhammad and G.-W. Kim, “Visual Object Detection Based LiDAR Point Cloud
Classification,” in 2020 IEEE International Conference on Big Data and Smart Computing
(BigComp), Feb. 2020, pp. 438–440. doi: 10.1109/BigComp48618.2020.00-32.

[12] R. Sahba, A. Sahba, M. Jamshidi, and P. Rad, “3D Object Detection Based on LiDAR Data,”
in 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), Oct. 2019, pp. 0511–0514. doi:
10.1109/UEMCON47517.2019.8993088.

[13] L. Liu, J. He, K. Ren, Z. Xiao, and Y. Hou, “A LiDAR–Camera Fusion 3D Object Detection
Algorithm,” Information, vol. 13, no. 4, Art. no. 4, Apr. 2022, doi: 10.3390/info13040169.

[14] A. Y. Naich and J. R. Carrión, “LiDAR-Based Intensity-Aware Outdoor 3D Object
Detection,” Sensors, vol. 24, no. 9, Art. no. 9, Jan. 2024, doi: 10.3390/s24092942.

[15] “A Spatio-Temporal Graph Transformer Network for Multi-Pedestrain Trajectory
Prediction | IEEE Conference Publication | IEEE Xplore.” Accessed: Aug. 29, 2024.

62

[Online]. Available: https://ieeexplore-ieee-org.proxy.lib.ohio-
state.edu/document/9927798

[16] X. Cao and L. Guvenc, “Path Planning and Robust Path Tracking Control of an Automated
Parallel Parking Maneuver,” SAE International, Warrendale, PA, SAE Technical Paper
2024-01–2558, Apr. 2024. doi: 10.4271/2024-01-2558.

[17] “Autonomous Road Vehicle Path Planning and Tracking Control | IEEE eBooks | IEEE
Xplore.” Accessed: Oct. 24, 2023. [Online]. Available:
https://ieeexplore.ieee.org/book/9645932

[18] L. Guvenc, B. Aksun-Guvenc, B. Demirel, and M. T. Emirler, Control of Mechatronic
Systems. IET Digital Library, 2017. doi: 10.1049/PBCE104E.

[19] H. Wang, A. Tota, B. Aksun-Guvenc, and L. Guvenc, “Real time implementation of socially
acceptable collision avoidance of a low speed autonomous shuttle using the elastic band
method,” Mechatronics, vol. 50, pp. 341–355, Apr. 2018, doi:
10.1016/j.mechatronics.2017.11.009.

[20] M. Morsali, E. Frisk, and J. Åslund, “Spatio-Temporal Planning in Multi-Vehicle Scenarios
for Autonomous Vehicle Using Support Vector Machines,” IEEE Trans. Intell. Veh., vol. 6,
no. 4, pp. 611–621, Dec. 2021, doi: 10.1109/TIV.2020.3042087.

[21] S. Zhu, “Path Planning and Robust Control of Autonomous Vehicles,” Ph.D., The Ohio
State University, United States -- Ohio, 2020. Accessed: Oct. 24, 2023. [Online].
Available:
https://www.proquest.com/docview/2612075055/abstract/73982D6BAE3D419AP
Q/1

[22] G. Chen et al., “Emergency Obstacle Avoidance Trajectory Planning Method of Intelligent
Vehicles Based on Improved Hybrid A*,” SAE Int. J. Veh. Dyn. Stab. NVH, vol. 8, no. 1, pp.
10-08-01–0001, Nov. 2023, doi: 10.4271/10-08-01-0001.

[23] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone, “Reward (Mis)design for
autonomous driving,” Artif. Intell., vol. 316, p. 103829, Mar. 2023, doi:
10.1016/j.artint.2022.103829.

[24] B. R. Kiran et al., “Deep Reinforcement Learning for Autonomous Driving: A Survey,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6, pp. 4909–4926, Jun. 2022, doi:
10.1109/TITS.2021.3054625.

[25] F. Ye, S. Zhang, P. Wang, and C.-Y. Chan, “A Survey of Deep Reinforcement Learning
Algorithms for Motion Planning and Control of Autonomous Vehicles,” in 2021 IEEE
Intelligent Vehicles Symposium (IV), Jul. 2021, pp. 1073–1080. doi:
10.1109/IV48863.2021.9575880.

[26] Z. Zhu and H. Zhao, “A Survey of Deep RL and IL for Autonomous Driving Policy
Learning,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 14043–14065, Sep. 2022,
doi: 10.1109/TITS.2021.3134702.

[27] A. Kendall et al., “Learning to Drive in a Day,” in 2019 International Conference on
Robotics and Automation (ICRA), May 2019, pp. 8248–8254. doi:
10.1109/ICRA.2019.8793742.

[28] E. Yurtsever, L. Capito, K. Redmill, and U. Ozgune, “Integrating Deep Reinforcement
Learning with Model-based Path Planners for Automated Driving,” in 2020 IEEE

63

Intelligent Vehicles Symposium (IV), Oct. 2020, pp. 1311–1316. doi:
10.1109/IV47402.2020.9304735.

[29] A. Aksjonov and V. Kyrki, “A Safety-Critical Decision-Making and Control Framework
Combining Machine-Learning-Based and Rule-Based Algorithms,” SAE Int. J. Veh. Dyn.
Stab. NVH, vol. 7, no. 3, pp. 10-07-03–0018, Jun. 2023, doi: 10.4271/10-07-03-0018.

[30] “Deep reinforcement‐learning‐based driving policy for autonomous road vehicles -
Makantasis - 2020 - IET Intelligent Transport Systems - Wiley Online Library.”
Accessed: Oct. 24, 2023. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-its.2019.0249

[31] S. Nageshrao, H. E. Tseng, and D. Filev, “Autonomous Highway Driving using Deep
Reinforcement Learning,” in 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC), Oct. 2019, pp. 2326–2331. doi: 10.1109/SMC.2019.8914621.

[32] B. Peng et al., “End-to-End Autonomous Driving Through Dueling Double Deep Q-
Network,” Automot. Innov., vol. 4, no. 3, pp. 328–337, Aug. 2021, doi: 10.1007/s42154-
021-00151-3.

[33] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi, “End-to-End Race
Driving with Deep Reinforcement Learning,” Aug. 31, 2018, arXiv: arXiv:1807.02371.
doi: 10.48550/arXiv.1807.02371.

[34] F. Merola, F. Falchi, C. Gennaro, and M. Di Benedetto, “Reinforced Damage Minimization
in Critical Events for Self-driving Vehicles:,” in Proceedings of the 17th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications, Online Streaming, --- Select a Country ---: SCITEPRESS - Science and
Technology Publications, 2022, pp. 258–266. doi: 10.5220/0010908000003124.

[35] Z. Cao et al., “Reinforcement Learning based Control of Imitative Policies for Near-
Accident Driving,” Jun. 30, 2020, arXiv: arXiv:2007.00178. doi:
10.48550/arXiv.2007.00178.

[36] H. Chen, X. Cao, L. Guvenc, and B. Aksun-Guvenc, “Deep-Reinforcement-Learning-Based
Collision Avoidance of Autonomous Driving System for Vulnerable Road User Safety,”
Electronics, vol. 13, no. 10, Art. no. 10, Jan. 2024, doi: 10.3390/electronics13101952.

[37] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-Based Collision Avoidance,” IEEE
Trans. Control Syst. Technol., vol. 29, no. 3, pp. 972–983, May 2021, doi:
10.1109/TCST.2019.2949540.

[38] L. Pariota et al., “Integrating tools for an effective testing of connected and automated
vehicles technologies,” IET Intell. Transp. Syst., vol. 14, no. 9, pp. 1025–1033, 2020, doi:
10.1049/iet-its.2019.0678.

[39] S. Chen, N.-N. Zheng, Y. Chen, and S. Zhang, “A Novel Integrated Simulation and Testing
Platform for Self-Driving Cars With Hardware in the Loop,” IEEE Trans. Intell. Veh., vol.
PP, pp. 1–1, May 2019, doi: 10.1109/TIV.2019.2919470.

[40] Ş. Y. Gelbal, S. Tamilarasan, M. R. Cantaş, L. Guvenc, and B. Aksun-Guvenc, “A connected
and autonomous vehicle hardware-in-the-loop simulator for developing automated
driving algorithms,” in 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Oct. 2017, pp. 3397–3402. doi: 10.1109/SMC.2017.8123155.

[41] M. R. Cantas, S. Gelbal, L. Guvenc, and B. Aksun-Guvenc, Cooperative Adaptive Cruise

64

Control Design and Implementation. 2023.
[42] M. T. Emırler et al., “Lateral stability control of fully electric vehicles,” Int. J. Automot.

Technol., vol. 16, no. 2, pp. 317–328, Apr. 2015, doi: 10.1007/s12239-015-0034-1.
[43] D. Ozcan, U. Sonmez, and L. Guvenc, “Optimisation of the Nonlinear Suspension

Characteristics of a Light Commercial Vehicle,” Int. J. Veh. Technol., vol. 2013, pp. 1–16,
Feb. 2013, doi: 10.1155/2013/562424.

[44] X. Cao, H. Chen, S. Y. Gelbal, B. Aksun-Guvenc, and L. Guvenc, “Vehicle-in-Virtual-
Environment (VVE) Method for Autonomous Driving System Development, Evaluation
and Demonstration,” Sensors, vol. 23, no. 11, Art. no. 11, Jan. 2023, doi:
10.3390/s23115088.

[45] X. Cao, H. Chen, S. Y. Gelbal, B. A. Guvenc, and L. Guvenc, “Vehicle-in-Virtual-
Environment Method for ADAS and Connected and Automated Driving Function
Development, Demonstration and Evaluation,” SAE International, Warrendale, PA, SAE
Technical Paper 2024-01–1967.

[46] S. Y. Gelbal, M. R. Cantas, B. A. Guvenc, L. Guvenc, G. Surnilla, and H. Zhang, “Mobile Safety
Application for Pedestrians Utilizing P2V Communication over Bluetooth,” SAE
International, Warrendale, PA, SAE Technical Paper 2022-01–0155, Mar. 2022. doi:
10.4271/2022-01-0155.

1. Report No.

 .

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

Vehicle-in-Virtual-Environment (VVE) Method for Developing and

Evaluating VRU Safety of Connected and Autonomous Driving

5. Report Date

July 31, 2024

6. Performing Organization Code

.

7. Author(s)

Haochong Chen. (https://orcid.org/0009-0000-5461-0822)

Xincheng Cao. (https://orcid.org/0009-0008-2525-9031)

Bilin Aksun-Guvenc, Ph.D. (https://orcid.org/0000-0003-0836-9286)

Levent Guvenc, Ph.D. (https://orcid.org/0000-0001-8823-1820)

8. Performing Organization Report

No.

.

9. Performing Organization Name and Address

Automated Driving Lab

Ohio State University

1320 Kinnear Rd, 43212, OH

10. Work Unit No.

11. Contract or Grant No.

Federal Grant No. 69A3552344811

12. Sponsoring Agency Name and Address

Safety21 University Transportation Center

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

13. Type of Report and Period

Covered

Final Report (July 1, 2023-June 30,

2024)

14. Sponsoring Agency Code

USDOT

15. Supplementary Notes

Conducted in cooperation with the U.S. Department of Transportation.

.

16. Abstract

This report focuses on pedestrian safety and starts by considering five FARS pedestrian crash scenario use cases. A

hybrid pedestrian safety system that switches from a conventional path following mode to double deep reinforcement

learning pedestrian collision avoidance maneuvering after detection of collision risk interactions with nearby

pedestrians is developed and demonstrated using simulations in a virtual environment. The Vehicle-in-Virtual-

Environment (VVE) method is further developed to test the considered use cases with moving real vehicle(s) and real

pedestrian(s) in a safe and repeatable manner. The VVE method developed is demonstrated using the pedestrian

crossing roadway – vehicle not turning case with vehicle-to-pedestrian communication using mobile phones to convey

pedestrian motion to the vehicle. Results will be extended to bicyclist safety in future work

17. Key Words

vulnerable road users, pedestrian safety, crash avoidance

systems, deep reinforcement learning, vehicle-in-virtual-

environment

18. Distribution Statement

No restrictions.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this

page)

Unclassified

21. No. of

Pages

65

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

	Guvenc, Levent 422.pdf
	Chapter 1
	Chapter 2
	2.1 Camera Based Vulnerable Road User (VRU) Detection
	2.2 Lidar Data Process and Vulnerable Road User (VRU) Trajectory Prediction
	2.3 Conclusion

	Chapter 3
	3.1 Introduction
	3.2 Path Generation
	3.3 Linear Path-tracking Model
	3.4 Disturbance Observer
	3.5 Simulation Study
	3.6 Conclusions

	Chapter 4
	4.1 Introduction
	4.2 Methodology
	4.2.1 Vehicle Model
	4.2.2 Low-level PID Pure Pursuit Path Tracking Controller Design
	4.2.3 High-level DRL Based Collision Avoidance Controller Design

	4.3 Results
	4.3.1 Test Case 1
	4.3.2 Test Case 2

	4.4 Conclusions

	Chapter 5
	5.1 Introduction
	5.2 Methodology
	5.2.1 VVE System Structure
	5.2.2 Frame Transformation/Conversion for Motion Synchronization
	5.2.3 V2P System Structure

	5.3 Results
	5.4 Conclusions

	Chapter 6
	References

	422 1700.pdf

Accessibility Report

		Filename:

		Guvenc_L_422.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 27

		Failed: 2

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Failed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
