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Chapter 1 

Overview 

With rapid urbanization and technology development, the number of privately owned 

vehicles has dramatically increased each year. The excessive numbers of private vehicles 

have led to traffic congestion and car accidents, which gradually become a new set of 

challenges that every modern city must confront. According to the Global Status Report on 

Road Safety released by the World Health Organization (W.H.O.), over 50 million people get 

injuries, and 1.3 million individuals lose their lives in car accidents worldwide each year [1]. 

In the United States alone, over 2.3 million people are injured, and around 40,000 lives are 

lost in car accidents [2]. Among these car accidents, around 75% are attributed to human 

errors, such as drowsy driving, driving under the influence (DUI), and distracted driving. The 

use of an Automated Driving System (ADS) that benefits from powerful and robust 

autonomous driving algorithms may significantly reduce car accidents caused by human 

mistakes, thereby becoming a potential solution to these urgent traffic challenges. The 

Society of Automotive Engineers (SAE International) has categorized autonomous vehicles 

into six levels, ranging from Level 0 (fully manual driving) to Level 5 (fully autonomous 

driving). Particularly, vehicles at SAE Levels 4 and 5 have the capability to dramatically 

decrease accidents caused by human mistakes since their automated driving algorithms 

should have robust and steady performance under all traffic condition. In order to increase 

the level of autonomy of road vehicles, extensive research and testing have been conducted 

in the field in recent years. However, alongside these developments, new challenges and 

potential issues have also emerged especially related to rare and extreme events that usually 

end in collisions or near collisions. 

The current approach to testing and evaluating connected and autonomous driving 

algorithms typically relies on model-in-the-loop (MIL) and hardware-in-the-loop (HIL) 

simulations, where the effectiveness of these methods is highly dependent on the accuracy 

of the simulated vehicle models that are used. Following these simulations, there is limited 

use of proving grounds, which is then followed by public road deployment of beta versions 

of the software and technology. This final public road development process forces other road 



4 
 

users to involuntarily participate in the development and evaluation of these beta-level 

autonomous driving functions. This approach is unsafe, costly, and inefficient, leading to 

numerous issues during the deployment of autonomous vehicles and contributes to a 

significant loss of public trust.  

To address the aforementioned challenges, the Vehicle-in-Virtual-Environment (VVE) 

method is proposed as a safe, efficient, and cost-effective solution for the development, 

evaluation, and demonstration of connected and autonomous driving functions. The VVE 

method places the vehicle in a highly realistic virtual environment with accurate virtual 

sensor feeds, while the actual vehicle operates in a large, empty test area. VVE method can 

synchronize real vehicle motions in the real world and virtual vehicle motions in a virtual 

environment, to allow for the creation of various virtual traffic scenarios for safe and 

resource-efficient testing.  

In this two-year project, we are focused on applying the Vehicle-in-Virtual-

Environment (VVE) method to develop, evaluate, and demonstrate safety functions for 

Vulnerable Road Users (VRUs). In the first year, our primary focus was on pedestrian safety 

and the results are presented in this final report. We analyzed five key pedestrian crash 

scenarios identified by the Fatality Analysis Reporting System (FARS), an organization under 

the National Highway Traffic Safety Administration (NHTSA) that compiles vehicle crash 

data. The pedestrian crash scenarios we examined include: "Crossing Roadway, Vehicle Not 

Turning" (FARS 750), "Walking/Running Along Roadway" (FARS 400), "Dash/Dart-Out" 

(FARS 740), "Crossing Roadway, Vehicle Turning" (FARS 790), and "Crossing Expressway" 

(FARS 910). These scenarios formed the basis of our research during the first year. We 

recreated these five traffic crash scenarios using CARLA (Car Learning to Act) virtual 

environment to ensure realistic and accurate simulations for our analysis. The detailed 

traffic crash scenarios simulation videos are provided next. Videos Link: 1. FARS400: 

https://youtu.be/3kpJUbqACxg 2. FARS740: https://youtu.be/3r9mYsyRZA8 3. FARS750: 

https://youtu.be/5RVWsK6CnLw 4. FARS790: https://youtu.be/F0ZQcdZlh-4 5. FARS910: 

https://youtu.be/cb-_dqDf1oM. 

 

https://youtu.be/3kpJUbqACxg
https://youtu.be/3r9mYsyRZA8
https://youtu.be/5RVWsK6CnLw
https://youtu.be/F0ZQcdZlh-4
https://youtu.be/cb-_dqDf1oM
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Therefore, we designed a comprehensive autonomous driving solution to ensure 

pedestrian safety. In Chapter 2, we explore an RGB camera and LiDAR-based perception 

method to identify, locate, and predict the trajectory of pedestrians in traffic environments. 

Chapter 3 demonstrates a disturbance observer integrated with a PID path tracking 

controller which provides precise and accurate path tracking for the collision free path. 

Following this, Chapter 4 introduces a deep reinforcement learning (DRL) based approach 

for path planning and collision avoidance. In Chapter 5, we discuss the principles of the 

Vehicle-in-Virtual-Environment (VVE) method and detail its implementation for testing and 

evaluating the ADAS system proposed in the previous chapters. Finally, in Chapter 6, we 

conclude our first-year research and outline future work. 

 

The publications that summarize some of our research findings with project support 

acknowledgment are: 

1. H. Chen and B. A. Guvenc, “Deep Reinforcement Learning Based Collision Avoidance 

of Automated Driving Agent,” SAE International, Warrendale, PA, SAE Technical 

Paper 2024-01–2556, Apr. 2024. [Online]. Available: 

https://www.sae.org/publications/technical-papers/content/2024-01-2556/ 

2. X. Cao, H. Chen, S. Y. Gelbal, B. A. Guvenc, and L. Guvenc, “Vehicle-in-Virtual-

Environment Method for ADAS and Connected and Automated Driving Function 

Development, Demonstration and Evaluation,” SAE International, Warrendale, PA, 

SAE Technical Paper 2024-01–1967, Apr. 2024. [Online]. Available: 

https://www.sae.org/publications/technical-papers/content/2024-01-1967/ 

3. H. Chen, X. Cao, L. Guvenc, and B. Aksun-Guvenc, “Deep-Reinforcement-Learning-

Based Collision Avoidance of Autonomous Driving System for Vulnerable Road User 

Safety,” Electronics, vol. 13, no. 10, Art. no. 10, Jan. 2024, doi: 

10.3390/electronics13101952. [Online]. Available: https://www.mdpi.com/2079-

9292/13/10/1952  

  

https://www.sae.org/publications/technical-papers/content/2024-01-2556/
https://www.sae.org/publications/technical-papers/content/2024-01-1967/
https://www.mdpi.com/2079-9292/13/10/1952
https://www.mdpi.com/2079-9292/13/10/1952
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Chapter 2 

Vulnerable Road User Detection 

2.1 Camera Based Vulnerable Road User (VRU) Detection 

In this section, the use of a computer vision based pedestrian perception strategy for 

VVE method to test autonomous driving functions is investigated using readily available and 

well-established approaches. Plenty of research has already done in the pedestrian detection 

field. The first approach is to perform object detection using a two-stage process: proposal 

generation and object detection. The proposal generation step uses a selective search 

algorithm to generate multiple region proposals which indicate potential object locations. 

Then, a neural network is applied to classify the object within the proposed region and refine 

its bounding box. As an example of this approach, Girshick et al. introduced R-CNN, a novel 

framework that leverages rich feature hierarchies from pre-trained convolutional neural 

networks to perform accurate object detection and semantic segmentation [3].  Building on 

the foundation of R-CNN, Girshick further refined the model with Fast R-CNN by integrating 

the region proposal and feature extraction steps. This integration was achieved by 

introducing a Region of Interest (RoI) pooling layer that extracts a fixed-length feature vector 

from the feature map for each object proposal, followed by fully connected layers that 

classify the features into object categories and regress the bounding box coordinates [4]. Ren 

et al. explored the concept further and proposed Faster R-CNN. This algorithm incorporated 

a Region Proposal Network (RPN) that shares full-image convolutional features with the 

detection network, thus enabling nearly cost-free region proposals [5]. Sun et al. introduced 

Sparse R-CNN which simplifies the previously complex pipeline and reduces the dependency 

on heuristic design, pushing the boundaries of object detection with a sparse set of highly 

effective proposals [6]. However, the major limitations of the R-CNN architecture are its 

deficiency in real-time performance caused by complicated procedure and computational 

complexity.  

The second approach is to merge the aforementioned two stages by applying a single 
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neural network to the whole image, dividing the image into regions and predicting bounding 

boxes and probabilities for each region simultaneously. Redmon introduced a convolutional 

neural network (CNN)-based architecture known as "YOLO" (You Only Look Once) for multi-

object detection. This architecture segments an image into multiple small grids, assigning 

each grid the task of detecting objects whose center points fall within its boundaries. For 

each grid cell, the model predicts multiple bounding boxes and assigns labels to these boxes, 

each with associated class probabilities. To enhance the accuracy and reduce redundancy, 

the model employs Non-Maximum Suppression (NMS) to eliminate overlapping bounding 

boxes that detect the same object [7]. Currently, since its debut, the YOLO architecture has 

undergone numerous iterations and enhancements, evolving to its eighth generation—

YOLOv8. These iterations have not only improved the model's accuracy and speed but also 

enabled YOLO to effortlessly recognize a wide variety of objects [8]. Additionally, there are 

many pre-trained YOLO models available for us to choose from. Therefore, in this chapter, 

we propose a training pipeline that utilizes a pre-trained, high-performance YOLO model and 

applies transfer learning to our dataset. One of the challenges in performing pedestrian 

detection is that the VVE method conducts traffic tests in a virtual environment, meaning all 

sensors are virtual. Therefore, unlike traditional pedestrian detection tasks that utilize real 

traffic images, our RGB camera is limited to process only virtual images. To address this 

challenge, the task is separated into two stages: 1. Find powerful pre-trained YOLO model. 2. 

Build CARLA VRU detection dataset and perform transfer learning on the dataset. 

The YOLO architecture we implemented for pedestrian detection is YOLO v8, which 

can identify pedestrians and bicyclists [9]. However, the original model sometimes fails to 

accurately recognize vulnerable road users (VRUs) and other vehicles in the virtual 

environment. Therefore, we retrained the pre-trained the model using the CARLA Object 

Detection Dataset to enhance its performance. The specific datasets used for training 

included versions 20, 18, and 16 from the CARLA Object Detection Dataset [10]. The training 

parameters were set to 20 epochs, approximately 7 hours of training time, with an image 

size of 640, while other parameters remained at their default settings. After transfer learning, 

we observed a significant improvement in performance, achieving a processing speed of 130 

ms per frame, which meets real-time performance criteria.  

https://universe.roboflow.com/alec-hantson-student-howest-be/carla-izloa/dataset/20


8 
 

Figures 2.1 and 2.2 clearly demonstrate that the model, after undergoing transfer 

learning, can accurately detect vehicles and multiple vulnerable road users (VRUs), including 

pedestrians and bicyclists. This enhanced ADAS’s detection capability by letting the system 

accurately interpret traffic information. Additionally, by integrating Lidar data, the precise 

locations of each detected VRU can be calculated, enabling the prediction of pedestrian 

trajectories. This integration of Lidar further enhances the system's ability to anticipate and 

respond to potential hazards on the road. Lidar data processing technology will be discussed 

in the next section. The demo video link is: https://youtu.be/N4Q_0O1uVuA.  

 

 

Figure 2.1: Yolo-v8 pedestrian detection. The first pedestrian is walking to the left while the 

second pedestrian is running to the right. Both pedestrians are crossing the street near a T-

shaped intersection using the crosswalk. 

https://youtu.be/N4Q_0O1uVuA
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Figure 2.2: Yolo-v8 bicyclist and vehicle detection. There is a bicycle followed by a vehicle. 

The bicyclist is also identified as a person. Both the bicyclist and vehicle are moving along 

the cross street in a T-shaped intersection. 

 

2.2 Lidar Data Process and Vulnerable Road User (VRU) Trajectory Prediction 

Lidar technology offers significant advantages over traditional front-facing vehicle 

cameras, particularly in the field of autonomous vehicles. Unlike cameras, which are limited 

to capturing visual data from the front of the vehicle, a three-dimensional Lidar provides a 

360-degree view, allowing it to detect obstacles all around the vehicle. This comprehensive 

coverage is important for the complex decision making required in autonomous driving. 

Lidar sensors work by emitting laser beams and measuring the time it takes for the reflection 

to return, thereby creating detailed and accurate three-dimensional maps of the 

environment. This capability makes Lidar exceptionally good at detecting and tracking 

vulnerable road users, even in challenging conditions such as low light or obstructed views. 

Consequently, there has been substantial research and development in the field, focusing on 

leveraging Lidar for vulnerable road user detection, which is important for improving safety 

and operational efficiency in autonomous vehicle technologies.  

Muhammad et al. focused on enhancing object detection in autonomous driving 

through a neural network approach that integrates visual data with Lidar point clouds. They 

proposed a framework aiming to address the inaccuracies common in Lidar detections by 
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using separate processing streams for visual and Lidar data, which allows for a lightweight 

Lidar-only setup during runtime, if needed. The approach they used is designed to work in 

real-time on embedded platforms, suggesting significant potential for practical applications 

in dynamic environments [11]. Sahba et al. introduced an effective method for three-

dimensional object detection using Lidar data through the PointPillars network. Their study 

utilizes the nuScenes dataset to train the model for detecting cars, pedestrians, and buses, 

demonstrating that increasing the number of Lidar sweeps substantially improves detection 

performance. Their research emphasizes the potential of integrating different types of 

sensor data to further enhance the encoder's effectiveness in autonomous vehicle 

applications [12]. Liu et al. developed a Lidar-camera fusion algorithm for three-dimensional 

object detection, focusing on autonomous driving applications. Their proposed FuDNN 

network used a two-dimensional backbone for image feature extraction and an attention-

based fusion sub-network for integrating features from camera and Lidar data. Their model 

was tested on the KITTI dataset and has shown high accuracy in detecting cars, reflecting 

significant improvements over existing Lidar-camera fusion techniques [13]. Naich et al. 

introduced a Lidar-based intensity-aware three-dimensional object detection approach for 

outdoor environments. They proposed a voxel encoder that generates intensity histograms 

to enhance the feature set for robust detection, integrated within a single-stage detector. 

Their method was evaluated using the KITTI dataset which not only matched but in some 

cases surpassed state-of-the-art performance, especially in detecting pedestrians and 

cyclists, while maintaining high frame rates during inference [14]. Zhu et al. introduced the 

Spatio-Temporal Graph Transformer Network (STGFNet) for predicting multi-pedestrian 

trajectories, leveraging both spatial and temporal data. Their proposed model integrated a 

novel decoder structure and a memory mechanism to enhance trajectory continuity and 

used HuberLoss for the first time as a loss function, showing notable improvements in 

prediction accuracy across multiple datasets. This research exemplified the usefulness of 

combining transformer architectures with graph neural networks to address the dynamic 

complexities of pedestrian movement in crowded spaces [15]. 
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2.3 Conclusion 

In this chapter, we explored various advanced methodologies for detecting VRUs 

using camera-based and Lidar technologies for autonomous driving. Our literature review 

indicates that YOLOv8 is not only efficient for real-time pedestrian and bicyclist detection 

but also straightforward to implement. By leveraging pre-trained models and applying 

transfer learning, our model has demonstrated the capability to accurately identify various 

VRUs in a simulated environment. Additionally, we have found that Lidar technology, in 

comparison to cameras, provides superior accuracy in locating the positions of road users 

due to its ability to generate precise three-dimensional maps of the surrounding 

environment. Therefore, we conducted an extensive review of the latest studies in Lidar 

technology and pedestrian trajectory prediction, which will undoubtedly enhance our 

foundation for future research in enhancing the safety and efficiency of autonomous driving 

systems. The vehicle-in-virtual-environment development and evaluation method of our 

research uses sensor feeds from the virtual environment of vehicle and vulnerable road user 

interactions of high collision risk. 
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Chapter 3 

Disturbance Observer (DOB) and PID based Path 

Tracking 

3.1 Introduction 

 In the previous chapter, the process of detecting vulnerable road users was described. 

This chapter focuses on path tracking for following a collision free path in the presence of 

vulnerable road users. 

 

3.2 Path Generation 

 The collision avoidance maneuver in this case is assumed to be a single lane-change. 

The overall procedure of obtaining such a reference path can be condensed to the following: 

(a) generate limited number of sample waypoints to ascertain the general shape of the path; 

(b) generate dense waypoints based on the sample waypoints to complete the path waypoint 

design; (c) apply segmentation to the dense waypoints to cut the path into several segments, 

ideally with each segment containing a minimum amount of features (i.e. corners); and (d) 

perform polynomial fit optimization to obtain the desired path expression that guarantees 

smooth curvature within each segment as well as smooth transition between the segments. 

The detailed steps of this procedure are outlined in reference [16]. In Figure 3.1, an example 

of the optimized reference path and its path curvature are displayed to demonstrate the 

smoothness of such a path generated using this approach. 
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Figure 3.1: Reference path optimization: (a) optimized path; (b) path curvature of the 

optimized path [16]. 

 

3.3 Linear Path-tracking Model 

 This section presents the linear path-tracking model that serves as the basis for the 

proposed control routine. The detailed derivation of this model can be found in [17]. This 

linear path-tracking model contains two components: a (linear) lateral single-track model 

and a path-tracking model augmentation. The path-tracking scenario is illustrated in Figure 

3.2, and the resulting linear path-tracking model is described in Equation (3.1). The 

parameters of this model are specified in Table 3.1. It can be observed that, for generality, 

the model presented in Equation (3.1) has both front and rear steering angles 𝛿𝛿𝑓𝑓 and 𝛿𝛿𝑟𝑟 as 

inputs. In our case, the vehicle is assumed to be front-wheel-steer only. It can also be noticed 

that path curvature 𝜌𝜌𝑟𝑟𝑟𝑟𝑓𝑓  and yaw moment disturbance 𝑀𝑀𝑧𝑧𝑧𝑧  enter the model as external 

disturbances. Additionally, the preview distance 𝑙𝑙𝑠𝑠 is chosen to be a linear function of vehicle 

velocity. It should also be remarked that vehicle speed can be scheduled according to the 

refence path curvature to make sure vehicle lateral acceleration stays within an acceptable 

limit. 

⎣
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where: 𝑙𝑙𝑠𝑠 = 𝐾𝐾𝑉𝑉, K is a constant 

Table 3.1: Explanation of linear path-tracking vehicle model parameters. 

Model 
 

Explanation 
𝛽𝛽 Vehicle side slip angle 
r Vehicle yaw rate 

Δ𝜓𝜓𝑝𝑝 Heading error 
𝑒𝑒𝑦𝑦 Path-tracking error 
𝐶𝐶𝑓𝑓 Front tire cornering stiffness 
𝑙𝑙𝑓𝑓 Distance between CG and front axle 
𝐶𝐶𝑟𝑟 Rear tire cornering stiffness 
𝑙𝑙𝑟𝑟 Distance between CG and rear axle 
M Vehicle mass 
V Vehicle velocity 
𝑙𝑙𝑠𝑠 Preview distance 
𝐼𝐼𝑧𝑧 Vehicle yaw moment of inertia 
𝜌𝜌𝑟𝑟𝑟𝑟𝑓𝑓 Reference path curvature 

𝑀𝑀𝑧𝑧𝑧𝑧 Yaw moment disturbance 
K Preview distance scheduling constant 

 

 

Figure 3.2: Path-tracking scenario showing the desired path, the vehicle offset distance and 

orientation error with respect to the desired path and the preview distance [17].  
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3.4 Disturbance Observer 

This section presents a general overview of the disturbance observer (DOB). In 

automotive path-tracking applications, this is also referred to as a curvature rejection filter 

[17]. In general, the disturbance observer has two main functions: disturbance rejection and 

model regulation. To observe these effects, one can first consider a simple input-output 

system consisting of a plant (G) with multiplicative model uncertainty (Δ𝑚𝑚) and an external 

disturbance (d) applied at the output, as displayed in Figure 3.3. It should be noted that 𝐺𝐺𝑛𝑛 

is called the nominal plant. One can then write Equation (3.2) to describe this system, and 

further obtain Equation (3.3) by defining the extended disturbance e. 

𝑦𝑦 = 𝐺𝐺𝐺𝐺 + 𝑑𝑑 = �𝐺𝐺𝑛𝑛(1 + 𝛥𝛥𝑚𝑚)�𝐺𝐺 + 𝑑𝑑 = 𝐺𝐺𝑛𝑛𝐺𝐺 + (𝐺𝐺𝑛𝑛𝛥𝛥𝑚𝑚𝐺𝐺 + 𝑑𝑑) = 𝐺𝐺𝑛𝑛𝐺𝐺 + 𝑒𝑒 (3.2) 

𝑒𝑒 = 𝑦𝑦 − 𝐺𝐺𝑛𝑛𝐺𝐺 (3.3) 

 

 

Figure 3.3: Sample input-output system with disturbance and model uncertainty [16]. 

 

Since the purpose of the DOB is to achieve disturbance rejection and model regulation, 

the end goal is to have a system without model uncertainty and external disturbance, which 

can be described in Equation (3.4). 

𝑦𝑦 = 𝐺𝐺𝑛𝑛𝐺𝐺𝑛𝑛 (3.4) 

To determine the input (u) that is necessary to achieve this, one can combine Equation (3.2) 

and Equation (3.4), and further apply Equation (3.3) to get the result described in Equation 

(3.5). 

𝐺𝐺 = 𝐺𝐺𝑛𝑛 −
𝑦𝑦
𝐺𝐺𝑛𝑛

+ 𝐺𝐺 (3.5) 
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It must be noted, however, that the result in Equation (3.5) is not implementable for 

the following two reasons: 1) The input u is on both sides of the expression; 2) 1/𝐺𝐺𝑛𝑛 is not 

proper since 𝐺𝐺𝑛𝑛  is proper for most physical systems. To make this result implementable, 

Equation (3.5) is modified to Equation (3.6) where Q is introduced as a unity gain low-pass 

filter of the appropriate order such that 𝑄𝑄/𝐺𝐺𝑛𝑛 is proper. 

𝐺𝐺 = 𝐺𝐺𝑛𝑛 −
𝑄𝑄
𝐺𝐺𝑛𝑛
𝑦𝑦 + 𝑄𝑄𝐺𝐺 (3.6) 

Equation (3.6) can be represented in the form of the system block diagram shown in Figure 

3.4. It should be noted that an additional external input n is added as sensor noise. Using this 

block diagram, several transfer functions of interest can be derived as given in Equation 3.7. 

⎩
⎪
⎨

⎪
⎧

𝑦𝑦
𝑢𝑢𝑛𝑛

= 𝐺𝐺𝑛𝑛𝐺𝐺
𝐺𝐺𝑛𝑛(1−𝑄𝑄)+𝐺𝐺𝑄𝑄

𝑦𝑦
𝑧𝑧

= 𝐺𝐺𝑛𝑛(1−𝑄𝑄)
𝐺𝐺𝑛𝑛(1−𝑄𝑄)+𝐺𝐺𝑄𝑄

𝑦𝑦
𝑛𝑛

= −𝐺𝐺𝑄𝑄
𝐺𝐺𝑛𝑛(1−𝑄𝑄)+𝐺𝐺𝑄𝑄

 (3.7) 

 

 

Figure 3.4: The DOB block diagram is shown here. The DOB regulated system within the 

dashed box acts like the nominal model 𝐺𝐺𝑛𝑛  and disturbances d are rejected within the 

bandwidth of the Q filter [16]. 

 

From Equation (3.7), it can be observed that at low frequencies when 𝑄𝑄 = 1, 𝑦𝑦/𝐺𝐺𝑛𝑛 = 𝐺𝐺𝑛𝑛 and 

𝑦𝑦/𝑑𝑑 = 0, demonstrating that model regulation and disturbance rejection are both achieved. 

Additionally, at high frequencies where 𝑄𝑄 = 0, 𝑦𝑦/𝑛𝑛 = 0, meaning that high frequency sensor 

noises can be rejected. It can thus be concluded that this system structure can achieve the 

desired effect. 
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In general, to design a DOB, one should construct a unity gain low-pass filter Q and a 

nominal plant 𝐺𝐺𝑛𝑛. As discussed previously, the Q filter must be of appropriate order such that 

𝑄𝑄/𝐺𝐺𝑛𝑛  is proper. Additionally, the Q filter should also have an appropriate bandwidth to 

ensure its performance, as a bandwidth too low will result in poor disturbance rejection and 

model regulation, while a bandwidth too high will cause high frequency sensor noises to 

enter the system and will also cause stability robustness issues. The nominal or desired plant 

model/behavior𝐺𝐺𝑛𝑛  should also be designed carefully as its dynamics must not be too 

drastically different from that of the uncertain plant G, otherwise the design will fail to 

achieve its goals. 

In the case of applying this control structure to the collision avoidance (treated as a 

single-lane change here) path-tracking problem, the plant model G can be represented as the 

transfer function from front steering angle 𝛿𝛿𝑓𝑓  to path-tracking error 𝑒𝑒𝑦𝑦  as we assume the 

vehicle is front-wheel-steer. The external disturbance entering the system in this case is the 

reference path curvature as yaw moment disturbance is assumed to be zero. Hence, 𝐺𝐺𝑛𝑛 and 

y as displayed in Figure 3.4 are front steering angle 𝛿𝛿𝑓𝑓  and path-tracking error 𝑒𝑒𝑦𝑦 , 

respectively. From the linear path-tracking model in Equation (3.1), one can derive that plant 

G is proper and has a relative order of two, which means that the Q filter must be at least 

second order to guarantee that 𝑄𝑄/𝐺𝐺𝑛𝑛 is proper. Thus, the Q filter is chosen as a second order 

system with unity gain in the form displayed in Equation (3.8). Since the control system can 

be speed-scheduled and the path-tracking model in Equation (3.1) includes vehicle speed 

and preview distance, system parameters can change as the vehicle moves along the path. 

𝑄𝑄 = 𝜔𝜔𝑛𝑛
2

𝑠𝑠2+2𝜉𝜉𝜔𝜔𝑛𝑛𝑠𝑠+𝜔𝜔𝑛𝑛2
 (3.8) 

The DOB is usually applied together with an additional feedback controller to smooth out its 

operations further. Figure 3.5 displays the system block diagram with this additional 

feedback control loop, where C denotes the feedback controller which is designed for the 

desired nominal plant model Gn based on the model regulation property of DOB. 
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Figure 3.5: Control system with DOB and feedback controller with the DOB regulated plant 

shown within the dashed rectangle [16]. 

 

The feedback controller mentioned above can be of any design. We present an 

example design that features a speed-scheduled, parameter-space PID controller, the details 

of which can be found in [16]. The parameter-space method is discussed in detail in [18]. The 

reference input (denoted as r in Figure 3.5) should be zero in this case considering that the 

goal of the control system is to eliminate path-tracking error 𝑒𝑒𝑦𝑦. The form of the controller 

is presented in Equation (3.9). The controller gains (𝑘𝑘𝑝𝑝,𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑧𝑧) are the parameters to be 

tuned. Since the controller is speed-scheduled in this case as well, the tunable parameter set 

has four elements: (𝑉𝑉,𝑘𝑘𝑝𝑝,𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑧𝑧) . A D-stability region, as displayed in Figure 3.6, is 

established for pole placement. An example of the admissible controller gain region at a 

certain scheduled speed is shown in Figure 3.7. During the process of controller gains value 

selection, a general rule of thumb is to choose the gains to be as small as possible within the 

admissible region so that the control effort can be minimized while the energy efficiency 

maximized. 

𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑖𝑖
𝑠𝑠

+ 𝑘𝑘𝑧𝑧𝑠𝑠 (3.9) 
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Figure 3.6: D-stability region for desired settling time, desired overshoot and maximum 

bandwidth constraints on closed loop system pole locations [16]. 

 

 

Figure 3.7: Admissible control region at a certain speed showing the controller gain space 

where D-stability is satisfied [16]. 

 

3.5 Simulation Study 

Simulation studies are conducted to demonstrate the efficacy of the proposed control 

design. A Simulink model is constructed to simulate the motions of the vehicle. The 

parameter values used in the simulations are listed in Table 3.2. 
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Table 3.2: Parameter values used in the simulation. 

Parameter [unit] Value 
𝐶𝐶𝑓𝑓 [N/rad] 3e5 
𝑙𝑙𝑓𝑓 [m] 2 

𝐶𝐶𝑟𝑟 [N/rad] 3e5 
𝑙𝑙𝑟𝑟 [m] 2 
M [kg] 3000 

𝐼𝐼𝑧𝑧 [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] 5.113e3 
𝜔𝜔𝑛𝑛 [rad/sec] 100 
ζ [unitless] 0.707 

 

The simulation results for standalone DOB, standalone PID and combined PID and 

DOB control systems are displayed in Figure 3.8, Figure 3.9 and Figure 3.10, respectively. 
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Figure 3.8: Single lane change collision avoidance DOB simulation results [16]. 
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Figure 3.9: Single lane change collision avoidance PID simulation results [16]. 
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Figure 3.10: Single lane change collision avoidance PID+DOB simulation results [16]. 

 

It can be observed from Figures 3.8-3.10 that all three simulations display satisfactory 

single lane change collision avoidance path-tracking performance. To better compare the 

results, Table 3.3 is constructed to record maximum absolute path-tracking error, RMS path-

tracking error, maximum absolute steering angle as well as maximum absolute steering rate. 

 

Table 3.3: Forward motion simulation results evaluation [16]. 

Parameter DOB PID PID+DOB 
Max absolute 
path-tracking 

  

0.0071 0.0073 1.3399e-4 

RMS path-
tracking error 

 

0.0029 0.0027 4.4357e-5 

Max absolute 
steering 
angle [rad] 

0.4692 0.4746 0.4697 

Max absolute 
steering rate 
[rad/sec] 

0.6597 2.4348 2.4538 

 

Results in Table 3.3 show that the control system that combines PID and DOB exhibits the 

best performance in terms of minimizing path-tracking errors. It is also seen from Figure 

3.10 that with the combined DOB and PID control system, the DOB provides the majority of 

the control action while the PID controller serves mainly to smooth out the steering input 
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generated by the DOB. 

 

3.6 Conclusions 

This chapter reviewed the use of classical controllers along with the DOB method for 

tracking a collision avoidance path which was chosen as a single lane change maneuver. The 

parameter space method was used to design the classical controller gains, a PID controller 

in this case. Simulation results showed the effectiveness of this approach which executes a 

single lane change type avoidance if a VRU is detected. A learning controller is presented in 

the next chapter as the focus of this research. The classical approach of following a pre-

planned collision avoidance path was presented to show the advantages of the learning 

control approach which can adapt easily to different encounter situations between the 

vehicle and the VRU. 
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Chapter 4 

Deep Reinforcement Learning (DRL) Based Collision 

Avoidance 

4.1 Introduction 

Path planning and collision avoidance algorithms, as very crucial components of the 

ADS, largely affect the overall performance of autonomous driving. Unlike traditional car 

navigation, autonomous driving path planning must consider not only the overall path 

planning from the starting point to the destination but also local collision avoidance along 

the path. Therefore, the purpose of this chapter is to present the design of a reliable and 

robust path planning and collision avoidance algorithm for ADS which can help to increase 

the overall performance of autonomous driving and enhance the SAE autonomous driving 

level.  

Collision avoidance first requires detection of VRU(s) [11-14] followed by collision 

avoidance maneuver planning and maneuver tracking. Currently, there are two major 

approaches to design path planning and collision avoidance algorithms. The first method is 

the optimization-based approach, which typically treats the path planning and collision 

avoidance issue as an optimization problem with constraints and then seeks to solve the 

defined problem. Wang et al. approached collision avoidance as a waypoint position 

optimization problem, applying the Elastic Band algorithm to iteratively generate a new 

collision-free trajectory that maintains a socially acceptable distance from Vulnerable Road 

Users (VRUs) [19]. Morsali et al. introduced a Support Vector Machine (SVM)-based 

spatiotemporal planning method to compute collision free regions within the 

spatiotemporal domain. By integrating this method with the A* path search algorithm and 

SVM-based heuristics, an optimal collision-free path was calculated in complex traffic 

scenarios [20]. Zhu et al. framed collision-free path searching as an optimization problem on 

a quintic spline and utilized a look-up table to enhance computational efficiency [21]. Chen 

et al. proposed a spatiotemporal obstacle avoidance algorithm that improves the efficiency 

and performance of the hybrid A* algorithm by leveraging a 3D spatiotemporal grid map 
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[22]. However, the major limitations of the optimization approach are its deficiency in real-

time performance caused by computational complexity and its shortage on control 

feasibility. The second approach is the machine learning based one, which typically treats 

the path planning and collision avoidance problem as a Markov Decision Process (MDP) and 

applies reinforcement learning to seek the optimal solution [23-26].  

Kendall et al. pioneered the application of the deep-reinforcement-learning (DRL) 

framework in autonomous driving, innovatively proposing an end-to-end model structure 

for autonomous driving [27]. Yurtsever et al. proposed an innovative hybrid deep-

reinforcement-learning framework to develop Automated Driving Systems (ADS) [28]. 

Aksjonov et al. proposed a control framework that combines the strengths of both traditional 

rule-based approaches and machine learning to develop an autonomous driving system [29]. 

Furthermore, Makantasis et al. introduced an innovative driving policy based on Double 

Deep Q-Networks (DDQN) that is adaptable to mixed driving environments. They conducted 

a series of tests to evaluate the algorithm's efficacy across varying levels of market 

penetration [30]. Nageshrao et al. integrated DDQN with a short-horizon safety mechanism 

to design an autonomous driving system tailored for highway conditions, tested under 

various traffic density settings. [31]. Peng et al. developed an end-to-end ADS using a Dueling 

Double Deep Q-Network (DDDQN) framework. They validated the efficiency and 

effectiveness of this method using The Open Racing Car Simulator (TORCS) [32]. Jaritz et al. 

introduced an Asynchronous Actor-Critic (A3C) based method for autonomous driving 

which maps RGB images from the front camera to driving actions using a realistic rally racing 

game environment for training. The approach demonstrates faster convergence and more 

robust performance compared to other DRL based end-to-end methods, indicating its 

potential for practical applications in autonomous vehicles [33]. In order to handle critical 

pre-accident scenarios in emergency situations, Merola et al. proposed a Deep Q-Network 

(DQN) based approach to design ADS and training the system to execute emergency 

maneuvers to minimize or avoid damage [34]. Cao et al. introduced a hierarchical 

reinforcement and imitation learning (H-REIL) approach for autonomous driving to handle 

near-accident scenarios. By integrating a low-level imitation learning controller with a high-

level reinforcement learning controller, their approach demonstrated capability of balancing 
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safety and efficiency[35]. However, a notable disadvantage of the machine learning-based 

approach is the instability in model performance under normal traffic conditions due to the 

absence of hard-coded safety protocols.  

To address the critical challenges outlined earlier, we introduce a novel hybrid 

hierarchical DRL framework designed to enhance collision avoidance performance in 

autonomous driving in this chapter. This framework uniquely combines a path following 

controller with DRL-based collision avoidance algorithms. Under typical VRU-free 

conditions, the vehicle employs a low-level path-tracking controller to maintain precise 

navigation. However, when VRUs are detected nearby, a high-level DRL collision avoidance 

controller is activated, enabling the vehicle to adjust its speed or trajectory to avoid potential 

collisions. The primary contribution of this research lies in the seamless integration of 

traditional path following control techniques with advanced machine learning-based 

collision avoidance strategies. This hybrid approach significantly improves both path 

tracking and collision avoidance capabilities, providing a robust foundation for future 

research in hybrid DRL based control for autonomous vehicles. 

 

4.2 Methodology 

4.2.1 Vehicle Model  

The vehicle model we used for model-in-the-loop (MIL) simulation in this chapter is 

a simplified linear vehicle model. We combined the linear longitudinal vehicle model with 

lateral single-track vehicle model to create this linear enhanced model. Figure 4.1 displays 

the geometry of the longitudinal vehicle model. The elements depicted include: 1) 𝐹𝐹𝑎𝑎  = 

aerodynamic drag due to headwind at velocity 𝑉𝑉𝑤𝑤𝑖𝑖𝑛𝑛𝑧𝑧; 2) 𝐹𝐹𝑟𝑟 = rolling resistance; 3) 𝜃𝜃 = road 

grade; 4) 𝑀𝑀𝑘𝑘  = the gravitational force of the vehicle; 5) 𝐹𝐹𝑔𝑔  = the component of the 

gravitational force acting along the slope of the road; 6) 𝐹𝐹𝑥𝑥 = the force exerted by the tires in 

the longitudinal direction. The input-output configuration of this model is shown in Figure 

4.2, where inputs such as throttle and brake pedal positions, headwind velocity, and road 

slope are used to determine the vehicle's longitudinal speed. It should be noted that for 

simplification, the model assumes no headwind or road grade. Figure 4.3 details the 
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structure of this model, with Figure 4.3(a) outlining how longitudinal forces translate into 

vehicle speed, and Figure 4.3(b) showing how input engine and brake torques are converted 

into longitudinal tire force. Table 4.1 enumerates the parameters featured in Figure 3. 

 

 

Figure 4.1: Longitudinal vehicle model geometry [36]. 

 

 

Figure 4.2: Longitudinal vehicle model input-output structure [36]. 
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(a) (b) 

Figure 4.3: Detailed components in the longitudinal vehicle model with (a) Longitudinal 
forces to longitudinal vehicle velocity calculation and (b) Input torques to longitudinal tire 
force calculation [36]. 

 

Table 4.1: Longitudinal model parameters [36]. 

Symbol Parameter 
𝐹𝐹𝑥𝑥 Longitudinal tire force 
M Vehicle mass 

𝑉𝑉𝑥𝑥 Vehicle longitudinal 
velocity 

X Vehicle longitudinal 
position 

𝜌𝜌𝑎𝑎  Air density 
𝐶𝐶𝑧𝑧 Air drag coefficient 

𝐴𝐴𝑓𝑓 Vehicle cross-sectional 
area 

𝑉𝑉𝑤𝑤𝑖𝑖𝑛𝑛𝑧𝑧 Headwind velocity 
𝜃𝜃 Road grade 

𝐶𝐶𝑟𝑟 Rolling resistance 
coefficient 

𝑇𝑇𝑚𝑚 Motor torque 
𝑇𝑇𝑏𝑏 Brake torque 
𝜂𝜂𝑡𝑡  Transmission efficiency 
𝜆𝜆 Gear ratio 
𝐼𝐼𝑤𝑤 Wheel moment of inertia 
𝜔𝜔 Wheel angular velocity 
𝑅𝑅𝜔𝜔 Wheel radius 
𝑠𝑠 Longitudinal tire slip 
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Figure 4.4 presents the geometry of the lateral single-track model while Equation 4.1 

[17] provides the state-space form of the simplified linear single-track model. The 

parameters for this lateral model are demonstrated in Table 4.2. The model inputs include 

the steering angles of the front and rear wheels, along with any vehicle yaw disturbances. 

The outputs of the model are the vehicle's side-slip angle and yaw rate. For simplification, 

this model considers a front-wheel-steering vehicle with no external yaw disturbances, 

meaning the primary input is the front wheel steering angle. Furthermore, in this simplified 

version, the vehicle's longitudinal speed is assumed to remain constant. 

 

Figure 4.4: Lateral single-track vehicle model geometry [36]. 
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Table 4.2: Lateral model parameters [36]. 

Symbol Parameter 
𝑋𝑋,𝑌𝑌 Earth-fixed frame coordinate 
𝑥𝑥, 𝑦𝑦 Vehicle-fixed frame coordinate 
𝑉𝑉 Vehicle center-of-gravity (CG) velocity 
M Vehicle Mass 
𝐼𝐼𝑧𝑧 Vehicle yaw moment of inertia 
𝛽𝛽 Vehicle side-slip angle 
𝜓𝜓 Vehicle yaw angle 
r Vehicle yaw rate 

𝑀𝑀𝑧𝑧𝑧𝑧 Yaw disturbance moment 
𝛿𝛿𝑓𝑓 , 𝛿𝛿𝑟𝑟 Front & rear wheel steer angle 
𝐹𝐹𝑓𝑓 ,𝐹𝐹𝑟𝑟 Front & rear lateral tire force 
𝑉𝑉𝑓𝑓,𝑉𝑉𝑟𝑟 Front & rear axle velocity 
𝛼𝛼𝑓𝑓 ,𝛼𝛼𝑟𝑟 Front & rear tire slip angle 
𝑙𝑙𝑓𝑓 , 𝑙𝑙𝑟𝑟 Distance between vehicle CG and front & rear axle 
𝐶𝐶𝑓𝑓 ,𝐶𝐶𝑟𝑟 Front & rear tire cornering stiffness 

 

 

Figure 4.5: Full vehicle model structure [36]. 

 

4.2.2 Low-level PID Pure Pursuit Path Tracking Controller Design 

The low-level controller used in this chapter is a PID pure pursuit path tracking 

controller which enables accurate path following in normal traffic conditions. This PID path 

tracking controller contains a longitudinal velocity controller and a lateral tracking 

controller. The longitudinal PID controller primarily manages the vehicle's speed by using 
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the speed differential between the vehicle's current speed and the target speed, as detailed 

in Equation 4.2, to produce throttle and brake command. Conversely, the lateral PID 

controller is responsible for steering control. It uses the angular difference between the 

vehicle’s current trajectory and the desired path direction, outlined in Equation 4.3, to 

generate a steering command. Figure 4.6 illustrates the method used to determine the angle 

difference for the lateral PID controller. The PID gains (Kp, Ki, Kd) for both the longitudinal 

and lateral PID controllers have been manually adjusted to achieve optimal performance 

tailored to the vehicle model and CARLA simulator. 

𝜀𝜀𝑙𝑙𝑙𝑙𝑛𝑛𝑔𝑔𝑖𝑖𝑡𝑡𝑢𝑢𝑧𝑧𝑖𝑖𝑛𝑛𝑎𝑎𝑙𝑙  =  𝜈𝜈𝑣𝑣𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑟𝑟 − 𝜈𝜈𝑧𝑧𝑟𝑟𝑠𝑠𝑖𝑖𝑟𝑟𝑟𝑟𝑧𝑧 (4.2) 

      𝜀𝜀𝑙𝑙𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙  =  𝜃𝜃𝑣𝑣𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑟𝑟 − 𝜃𝜃𝑝𝑝𝑎𝑎𝑡𝑡ℎ  (4.3) 

 

 

Figure 4.6: Lateral PID controller path tracking error illustration [36]. 

 

4.2.3 High-level DRL Based Collision Avoidance Controller Design 

The collision avoidance process for an autonomous vehicle (AV) is a dynamic, ongoing 

decision-making task. Initially, the AV identifies the positions, velocities, and trajectories of 

surrounding road users. Based on its own location and velocity, the AV then makes quick, 

precise decisions to navigate safely around these users. This entire decision-making process 

is like a Markov Decision Process (MDP), suggesting that collision avoidance can be 

approached as a classic MDP problem. MDPs are useful for modeling and addressing the 

uncertainties in traffic environments. 
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To address this MDP, deep reinforcement learning (DRL) is employed to develop an 

autonomous driving system designed to optimize decisions to maximize expected rewards 

while enhancing safety and efficiency. The fundamental elements of an MDP include states 

(S), actions (A), transition probabilities (P), and rewards (r). 

• State Space (S): The state space of the model contains a set of states, each representing 

specific information about the current traffic environment. There exist four key 

components in each state. The first one is the occupancy grid which represented by a 2-

D array. The occupancy grid maps the surrounding obstacles relative to the vehicle. This 

grid identifies road users as obstacles within the predefined detection ranges of 20 

meters ahead, 5 meters behind, and 7 meters to each side. Different weights are assigned 

to each grid cell based on the importance of nearby road users, with higher weights given 

to vulnerable road users (VRUs). Figures 4.7 and 4.8 illustrate the occupancy grid for 

vehicles with zero and nonzero yaw angles, respectively. The grid uses cross symbols to 

denote various elements: white crosses indicate collision-free areas, black crosses mark 

potential pedestrian collisions, red denotes the vehicle's geometric center, and blue 

represents the vehicle’s coordinates. The second component is the ego vehicle’s data 

which includes current information about the ego vehicle such as its location, orientation, 

and velocity. This component is crucial for dynamic decision-making and navigation. The 

third component is path tracking information which includes target tracking waypoints. 

The last component is obstacle Information which contains the time-to-collision zones 

(TTZ) for both vehicles (TTZ_v) and pedestrians (TTZ_p), as well as the difference 

between these zones (TTZ_diff), providing a measure of imminent threat from different 

obstacles. 

• Action Space (A): The action space contains a variety of discrete actions that the ego 

vehicle can execute under different traffic situations. Each action is defined as a tuple of 

control commands, including steering, throttle, and brake inputs. The design of the action 

space is tailored to meet the specific demands of various test scenarios, ensuring that the 

vehicle can adaptively respond to different driving conditions. 

• Transition Model (P): The transition model is an important component of the traffic 

simulation framework, designed to project next states based on the execution of specific 
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actions at the current state. In this chapter, the transition model is separated into two 

major components. The first part is a SIMULINK vehicle model which is used to simulate 

the dynamics of the ego vehicle, providing a detailed analysis of its motion based on the 

input actions. The specifics of the vehicle model, including its operational parameters and 

integration into the simulation environment have been presented above in the vehicle 

model sections of this chapter. The second part is the CARLA simulator which is used to 

replicate the traffic environment and the movements of other road users. Detailed 

discussions on the functionalities and contributions of the CARLA simulator to the overall 

traffic simulation are provided in the case study section. 

• Reward (r): The reward function calculates immediate rewards based on the transition 

from the current state to the next after an action is executed. The detailed discussions of 

rewards function design are also provided in the case study section. 

 

Figure 4.7: Occupancy grid 2-D array with zero yaw angle [36]. 

 

Figure 4.8: Occupancy grid 2-D array with 30° yaw angle [36]. 
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To enhance performance, the Double Deep Q-Network (DDQN) method is utilized since 

it reduces the overestimation of action values common in DQN by separating action selection 

from target Q-value generation. Unlike traditional optimization or supervised learning 

methods, DDQN directly learns from environmental interactions, making it highly effective 

for autonomous driving tasks. This approach not only handles high-dimensional inputs like 

the occupancy grid but also learns without the need for pre-labeled data, offering a 

significant advantage over other collision avoidance techniques. A comparison of traditional 

and DDQN methods is detailed in Table 4.3, illustrating the benefits of the DDQN approach 

in autonomous vehicle navigation. 

Table 4.3: Comparison to traditional optimization-based approach [36]. 

Approaches Pros Cons 

Elastic Band [19] 

1. Easy to implement.  
2. Can avoid getting stuck at 
local minimum  
3. Flexibility in local path 
modification. 
 

1. Path shape may be irregular 
especially in complex environment.  
2. Computational complexity may 
increase with number of obstacles.  
3. Path may be control infeasible 

Potential Field related 

1. Easy to implement.  
2. Can achieve real time 
performance.  
3. Path easy to visualize and 
understand. 

1. Sometimes stuck at local minimum, 
especially in complex environment.  
2. Oscillations may occur around 
obstacles.  
3. Path may be control infeasible. 
 

SVM based optimization [20] 

1. Path Planning in Spatial-
Temporal region.  
2. Can find optimal, efficient 
and control feasible path. 

1. Sometimes stuck at local minimum, 
especially in complex environment.  
2. Oscillations may occur around 
obstacles.  
3. Path may be control infeasible. 
 

Other Optimization Based 
Method [11], [35] 

1. Can generate control 
feasible and optimal (either 
time or fuel efficient) path.  
2. Can adapt to different 
traffic scenarios. 

1. Computational inefficient and may 
not achieve real time performance.  
2. Performance of the optimization 
might be sensitive to the tuning of 
parameters. 
 

Proposed DDQN Based ADS 

1. Learning ability.  
2. Model can achieve real 
time performance.  
3. Can adapt to different 
traffic scenarios. 

1. Training requires good 
computational resources.  
2. Performance of the model depends 
on training data quality. 
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Compared to other DRL algorithms, DDQN offers distinctive advantages. Currently, 

there are primarily two DRL based approaches: policy-based and value-based methods. 

Policy-based methods including Asynchronous Advantage Actor Critic (A3C) and Proximal 

Policy Optimization (PPO) concentrate on directly optimizing the policy that generates the 

agent's actions, aiming to enhance expected long-term rewards. These methods excel in 

environments with high-dimensional or continuous action spaces, offering robustness and 

stability during training. However, they tend to be less training-efficient than value-based 

methods. This inefficiency comes from their need to interact more frequently with the 

environment and their requirement to discard old data after policy updates, which can slow 

the learning process. Value-based methods, such as DDQ and DDQN, focus on estimating the 

values of actions (Q value) from each state, thereby indirectly optimizing a policy by selecting 

actions that maximize these estimated values. Unlike policy-based methods, these methods 

are off-policy which allows for the reuse of previously generated data, significantly 

improving training efficiency. This attribute makes value-based methods particularly useful 

in fields like collision avoidance because they can quickly adapt to dynamic traffic 

environments. Additionally, Deep Deterministic Policy Gradient (DDPG) merges elements of 

both policy-based and value-based approaches. It employs a policy network for action 

generation and a value network for action evaluation and is suitable for continuous action 

spaces. However, DDPG is complex to implement and highly sensitive to hyperparameter 

settings, which make it less ideal for complicated traffic environment simulation. Therefore, 

in this chapter, DDQN is selected as the preferred DRL framework for developing ADAS for 

collision avoidance.  

Figure 4.9 shows the neural network architecture utilized in the DDQN. This network 

contains four fully connected hidden layers: three layers each containing 128 units, followed 

by a final layer with 32 units. The network processing starts with the flattening of the 

occupancy grid. Then the flattened occupancy grid is sequentially fed through the first three 

128-unit layers. After processing through these layers, additional sensor data including the 

ego vehicle’s status, path tracking waypoints, and information of other road users are 

integrated with the output from the third layer and fed as input into the final 32-unit layer. 

This architectural is intentional, aiming to preserve important information that might be lost 
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in earlier layers, thus ensuring the network considers vital details in its outputs. 

Furthermore, the detailed workflow of the DDQN algorithm is demonstrated in Table 4.4. 

The DDQN employs a dual neural network structure to optimize its decision-making 

capabilities. The online network Q is responsible for generating optimal actions for current 

states. Concurrently, the target network Q� , used for gradient descent updates its parameters 

only after specified intervals. This staggered updating helps stabilize the training process by 

reducing rapid shifts in learning targets. Training data generated from the SIMULINK vehicle 

model and the CARLA traffic environment are stored in a replay buffer which breaks the 

correlation between consecutive steps and decreases variance in model training process. 

This method enhances the efficiency of data utilization and guarantees a more balanced and 

comprehensive sampling from the replay buffer throughout the training phases. Key 

implementation details for the DDQN training include: 1. Learning Rate which is set at 0.01 

to moderate the speed of learning. 2. Initial Exploration Probability which starts at 1, 

allowing for maximum exploration initially. 3. Decay Period such that the exploration rate 

decays over 200,000 steps, gradually shifting focus from randomly exploration towards 

exploiting learned strategies. 4. Final Exploration Probability which is reduced to 0.05 at the 

end, balancing the need for exploration with exploitation. 5. Reward Discount Factor which 

is fixed at 0.9 and this parameter prioritizes immediate over distant rewards, affecting the 

strategy’s short-term focus. 6. Episode Limit where each training episode is capped at 4,000 

steps to keep the training duration per episode manageable. 

 

Figure 4.9: DDQN framework neural network structure [36]. 
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Table 4.4: DDQN algorithm flowchart [36]. 

Algorithm 1 
1: Initialize replay memory 𝐷𝐷 
2: Initialize target network 𝑄𝑄�  and Online Network 𝑄𝑄 with random weights 𝜃𝜃 
3: for each episode do 
4:      Initialize traffic environment  
5:       for t = 1 to T do 
6:              With probability 𝜖𝜖 select a random action 𝑎𝑎𝑡𝑡 
7:              Otherwise select 𝑎𝑎𝑡𝑡 = maxa𝑄𝑄∗(𝑠𝑠𝑡𝑡,𝑎𝑎;𝜃𝜃)  
8:              Execute 𝑎𝑎𝑡𝑡 in CARLA and extract reward 𝑟𝑟𝑡𝑡 and next state 𝑠𝑠𝑡𝑡+1 
9:              Store transition (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in 𝐷𝐷 
10:            if t mod training frequency == 0 then 
11:                  Sample random minibatch of transitions (𝑠𝑠𝑗𝑗 , 𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑠𝑠𝑗𝑗+1)) from D 
12:                  Set 𝑦𝑦𝑗𝑗  =  𝑟𝑟𝑗𝑗  +  𝛾𝛾maxa𝑗𝑗+1𝑄𝑄�(𝑠𝑠𝑗𝑗+1, argmaxa𝑗𝑗+1𝑄𝑄(𝑠𝑠𝑗𝑗,𝑎𝑎𝑗𝑗+1;𝜃𝜃);𝜃𝜃)  

13:                  for non-terminal 𝑠𝑠𝑗𝑗+1 
14:                  or 𝑦𝑦𝑗𝑗  =  𝑟𝑟𝑗𝑗   for terminal 𝑠𝑠𝑗𝑗+1 
15:                  Perform a gradient descent step to update 𝜃𝜃 
16:                  Every N steps reset  𝑄𝑄�  =  𝑄𝑄 
17:            end if 
18:            Set 𝑠𝑠𝑡𝑡+1= 𝑠𝑠𝑡𝑡 
19:      end for 
20: end for 

 

4.3 Results 

To validate the effectiveness of the proposed routine, we introduce two pedestrian 

collision avoidance scenarios designed for model-in-the-loop (MIL) evaluation. The testing 

is conducted using the CARLA simulator which provides a realistic traffic environment 

coupled with the SIMULINK vehicle dynamics model to simulate vehicle behavior accurately. 

This setup enables a comprehensive assessment of the routine under controlled, yet realistic 

traffic conditions, ensuring a robust evaluation of its capabilities. 
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4.3.1 Test Case 1 

The first traffic scenario, illustrated in Figure 4.10, involves a pedestrian entering the 

crosswalk as a vehicle approaches. In this scenario, the crosswalk becomes a potential 

collision zone, requiring the vehicle to gradually slow down and stop before reaching the 

zone's edge. It's important to note that the DRL module's action space in this scenario will be 

limited to throttle and brake actions as the situation only necessitates a longitudinal motion 

maneuver. Additionally, to enhance the learning efficiency of the DRL module, several 

exemplary slowing down speed profiles are provided. These profiles help guide the DRL 

module by reducing its reliance on random action selection, significantly shortening the 

model training time. 

Figure 4.11 illustrates the progression of step rewards as the number of training 

episodes increases. The rewards increase with the episodes and tend to stabilize after 1000 

episodes, suggesting convergence and the successful identification of the optimal policy. This 

particular test case is relatively straightforward and allows for a scenario where even 

randomly generated actions stand a reasonable chance of completing the driving task 

successfully. Consequently, the reward progression shows limited improvement across 

training episodes after the initial period, reflecting the simplicity of the task. Nonetheless, 

the proposed deep reinforcement learning (DRL) model proves its effectiveness by 

consistently enabling the vehicle to successfully complete test cases, demonstrating its 

robust capability in typical traffic scenarios. 

 

Figure 4.10: Traffic Scenario 1 setup [36]. 



40 
 

 

Figure 4.11: Scenario 1 step reward vs. training episodes [36]. 

Figure 4.12 displays the evolution of the Time-To-Collision Zone (TTZ) for both the 

pedestrian and the vehicle. The three colored arcs represent the boundaries of the severity 

levels, with level one being the most critical and requiring immediate actions to avoid likely 

collisions, and level three being the least urgent such that the vehicle has enough time and 

space to react to potential collision risks. The consistently maintained TTZ of over four 

seconds for both the pedestrian and the vehicle indicates a low likelihood of collision, further 

validating the efficacy of the optimal policy. Scenario 1 speed following is shown in Figure 

4.13. 

 

Figure 4.12: Scenario 1 TTZ progression [36]. 
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Figure 4.13: Scenario 1 speed following performance. [36]. 

 

4.3.2 Test Case 2 

Figure 4.14 illustrates the second traffic scenario where a pedestrian unpredictably 

enters the road as the vehicle approaches, creating a potential collision risk. In this scenario, 

the pedestrian is considered a moving obstacle, and the vehicle must maneuver around the 

pedestrian by steering to avoid a collision. Consequently, the action space for the DRL 

module in this scenario expands to include not only longitudinal controls, such as throttle 

and brake inputs, but also steering actions. 

 

 

Figure 4.14: Traffic Scenario 2 setup [36]. 
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Figure 4.15 tracks the reward progression during the training of scenario 2. Rewards 

increase with the completion of more episodes and eventually stabilize at a high level, 

indicating successful optimization of the policy. Specifically, the convergence of the Time-To-

Collision Zone (TTZ) reward indicates that the agent effectively learns to avoid collisions 

with pedestrians, as further evidenced by Figure 4.16 which shows low collision risk. 

Additionally, the convergence of steering rewards suggests that the agent consistently 

selects appropriate steering angles during maneuvers. Moreover, as demonstrated in Figure 

4.17, the agent's behavior includes slowing down as it approaches the pedestrian and then 

accelerating once the collision risk has passed. This reaction pattern is desirable for safely 

handling such maneuvers. The link to the demo video of Scenario 2 is provided here: 

https://youtu.be/CmGtaAjZ_x4. This video serves to further illustrate the practical 

application and effectiveness of the DRL model in real-world-like simulations, showcasing 

its capability to navigate complex traffic scenarios safely and efficiently. 

 

   

(a) (b) (c) 

Figure 4.15: Training reward vs. episodes: (a) Step reward; (b) TTZ reward; (c) Steering 

reward [36]. 

 

https://youtu.be/CmGtaAjZ_x4
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Figure 4.16: Scenario 2 TTZ progression [36]. 

 

Figure 4.17: Scenario 2 vehicle speed progression [36]. 
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4.4 Conclusions 

Effectively planning a trajectory for connected autonomous vehicles that is both 

collision-free and control-feasible can help increase the vehicle's SAE autonomous driving 

level, thereby reducing car accidents caused by human error. This chapter proposed an 

innovative hybrid hierarchical autonomous driving controller which integrates DRL based 

local collision avoidance controller with global PID path following. Specifically, the DRL 

based collision avoidance component employs a Double Deep Q-Network (DDQN) 

framework to train autonomous driving agents. The agents are trained to not only prevent 

collisions but also maintain a socially acceptable distance from Vulnerable Road Users 

(VRUs) when potential collision may happen.  The PID based pure pursuit controller ensures 

the vehicle to perform precision path tracking on a pre-calculated optimal path under 

standard traffic conditions.  

The proposed method was evaluated by model-in-the-loop (MIL) simulations which 

demonstrated superior performance compared to other methods. It is mainly because the 

proposed method took the strengths of both model-based modular control and machine 

learning-based collision avoidance. Under normal traffic conditions, hard coded protocol and 

high-performance path tracking controller can guarantee the precision navigation. Under 

emergency traffic condition, flexible DRL based collision avoidance controller can perform 

collision avoidance to dodge the pedestrian by either decelerating and/or changing the path. 

In addition, the application of the MIL approach enables comprehensive testing of the 

proposed method across a wide array of edge cases, which makes results more convincing 

and persuasive. However, there are still some limitations of the proposed method. The 

majority of shortcoming of the proposed method came from its hybrid structure. Under 

certain traffic conditions, the switch from the PID-based path tracking controller to the 

emergency DRL-based collision avoidance controller can result in abrupt maneuvers. These 

sudden changes in movement may cause discomfort to passengers. Moreover, the real-time 

performance of the proposed algorithm under different traffic conditions requires further 

study.  

In general, this chapter proposed a novel approach to designing the ADS which not 

only fulfill the gaps in the autonomous driving path planning research in hybrid controller 
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but also offers insight for future study. The future research should focus more on smooth 

transition between different controllers and improving real-time performance under all 

traffic conditions. Moreover, the proposed method requires further testing and evaluation 

using hardware-in-the-loop (HIL) and vehicle-in-virtual environment (VVE) simulations. 

The details of vehicle-in-virtual environment implementation are presented in the next 

chapter. 
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Chapter 5 

Vehicle-in-Virtual-Environment (VVE) 

5.1 Introduction 

The typical development process for ADAS systems employed by OEMs generally 

follows these sequential steps: 1) extensive model-in-the-loop (MIL) simulation; 2) 

hardware-in-the-loop (HIL) testing; 3) proving ground testing; and 4) public road testing. As 

testing progresses, increasing levels of hardware and realism are introduced into the system. 

For instance, model-in-the-loop (MIL) is a purely virtual simulation tool, detailed in [38], 

while hardware-in-the-loop (HIL) testing begins to incorporate physical components, as 

discussed in [37-38]. Both MIL and HIL simulations rely on validated vehicle models with 

varying levels of fidelity that incorporate longitudinal [41], lateral [42], and vertical 

dynamics [43]. However, the VVE approach eliminates the need for these models since it uses 

the actual vehicle. 

Public road testing, as described, is not only expensive but also cost-ineffective, as 

encountering rare and extreme scenarios may require millions of miles of driving. Moreover, 

this type of testing inherently involves other road users as involuntary participants, raising 

significant safety concerns. To address these issues, this chapter introduces the vehicle-in-

virtual-environment (VVE) method as an intermediate step before public road deployment. 

The VVE method offers the realism of actual vehicle dynamics combined with the safety of a 

controlled testing environment. It also enables the safe testing of rare traffic scenarios 

without requiring extended periods of public road testing, as these scenarios can easily be 

replicated in a virtual environment. 

One area where the VVE method is particularly advantageous is in vehicle-to-

pedestrian (V2P) communication for enhancing Vulnerable Road User (VRU) safety. V2P 

communication involves the exchange of information between vehicles and pedestrians to 

promote traffic safety. Through various communication protocols, information can be 

transmitted between vehicles and mobile devices carried by pedestrians, such as cell phones. 
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This enables drivers to anticipate the presence of pedestrians in advance, allowing them to 

take preventive actions and avoid potential traffic accidents.  

 

5.2 Methodology 

5.2.1 VVE System Structure 

The VVE architecture is illustrated in Figure 5.1. The real vehicle operates in a secure, 

open area like a parking lot, with its movements being synchronized with a virtual vehicle in 

a highly realistic, 3D-rendered virtual environment that can be easily adjusted. The real 

vehicle's onboard sensors are replaced by virtual sensor inputs generated from the virtual 

environment, reflecting the perspective of the synchronized virtual vehicle. This setup 

allows the control unit on the real vehicle to respond to traffic scenarios within the virtual 

environment, calculating control commands accordingly. These commands are then 

executed by the real vehicle, with its movements being mirrored back into the virtual vehicle, 

thus closing the feedback loop. 

 

 

Figure 5.1: Illustration of VVE Architecture [44].  
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Our current implementation architecture of the VVE system is demonstrated in 

Figure 5.2 with the components onboard our test vehicle shown in Figure 5.3. The real 

vehicle is equipped with an RTK GPS unit (OxTS xNAV500) that includes differential 

antennas, providing accurate position and heading information even when the vehicle is 

stationary. This data is received and processed by the onboard control unit, the dSpace 

microautobox (MABX) electronic control unit, and then transmitted to the onboard 

simulation computer which runs a CARLA-based virtual environment built on the Unreal 

Engine, via the Ethernet UDP Protocol. 

 

Figure 5.2: Implemented VVE Architecture [44]. 

 

The virtual environment in our implementation replicates the Linden area in 

Columbus, Ohio, where a recent autonomous shuttle deployment occurred [45]. Upon 

receiving the real GPS data, the virtual environment performs frame transformation and 

conversion operations to synchronize the movements of the virtual vehicle with those of the 

real vehicle. Virtual sensors within the environment gather measurements and transmit this 

data back to the MABX electronic control unit via Ethernet UDP Protocol. It's important to 

note that data from virtual perception sensors such as radar and Lidar are transmitted 

directly to the MABX electronic control unit while data from virtual localization sensors like 

GPS positions require inverse frame transformation and conversion operations before being 



49 
 

sent back. The MABX electronic control unit then uses this information to generate actuator 

signals which control the real vehicle via a CAN bus connection. The real-virtual frame 

transformation and conversion operations are crucial for ensuring precise motion 

synchronization between the real and virtual vehicles and will be discussed in detail in a 

separate section. 

 

 

Figure 5.3: AV used for VVE implementation [44]. 

 

5.2.2 Frame Transformation/Conversion for Motion Synchronization 

As highlighted in the previous section, frame transformation and conversion 

operations are essential for achieving accurate motion synchronization between the real and 

virtual vehicles. Therefore, this section outlines the procedure we used to accurately 

represent real-world motions within the virtual environment. Motion synchronization 

generally begins at a specific time, referred to as the ‘reset time,’ during which the virtual 

vehicle's location and heading are initialized to a predetermined set of values, and the real 

vehicle's location and heading are recorded for future reference. As the real vehicle moves, 

the changes in its location and heading relative to the reset time are subjected to a series of 

frame transformation and conversion operations. These operations adjust the real-world 

changes so that they are accurately represented in the virtual environment's frame of 

reference, thereby achieving motion synchronization. It is important to note that once the 

position of the vehicle's center of gravity and its heading are determined through the frame 

transformation and conversion process, the coordinates of the entire vehicle body can be 
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reconstructed accordingly. The frame transformation and conversion process involve 

several components, each of which will be detailed in the following paragraphs. 

The first component of the process is a frame conversion operation illustrated in 

Figure 5.4. The OxTS GPS in the vehicle used provides the longitude, latitude and heading 

angle data in degrees, where the heading angle is recorded in the range of -180 deg and 180 

deg. Converting the longitude and latitude data into unit of meter, one can construct a 

coordinate frame, namely the real vehicle (𝐹𝐹𝑟𝑟) frame, as displayed in the left-hand side of 

Figure 5.4. It should be noted that the positive X-axis in this frame is assumed to be aligned 

with positive latitude direction, where zero heading angle corresponds to. It should also be 

noted that the positive heading angle in this frame is defined as clockwise (CW) in 

correspondence to the heading angle outputted by the OxTS GPS unit. In order to 

accommodate frame transformation operations in other components of the process, a new 

frame named GPS (𝐹𝐹𝑔𝑔) frame is constructed as displayed in the right-hand side of Figure 5.4. 

In this 𝐹𝐹𝑔𝑔 frame, zero heading is defined to be along the positive X-axis and positive heading 

angle is in the counterclockwise (CCW) direction. The frame conversion can thus be carried 

out as follows: 

�
𝑋𝑋𝑔𝑔 = 𝑋𝑋𝑟𝑟
𝑌𝑌𝑔𝑔 = −𝑌𝑌𝑟𝑟

𝜓𝜓𝑔𝑔 = −𝑚𝑚𝑚𝑚𝑑𝑑(𝜓𝜓𝑟𝑟 + 360,360)
 (5.1) 

 

Figure 5.4: Frame transformation/conversion component 1: conversion between 𝐹𝐹𝑟𝑟 frame 

and 𝐹𝐹𝑔𝑔 frame [45]. 

The second component of the process is a frame transformation operation illustrated 

in Figure 5.5. The 𝐹𝐹𝑔𝑔  frame is the same as described in Figure 5.4. At reset time t0, an 
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intermediate (𝐹𝐹) frame is created at the vehicle location with positive X-axis pointing at zero 

heading direction and positive heading defined in the CCW direction. As the vehicle moves 

to a new location at time t1, its location and heading can be represented in the 𝐹𝐹 frame as 

illustrated in Equation 5.2. It should be noted that set (𝑋𝑋𝑔𝑔0,𝑌𝑌𝑔𝑔0,𝜓𝜓𝑔𝑔0) and set (𝑋𝑋𝑔𝑔1,𝑌𝑌𝑔𝑔1,𝜓𝜓𝑔𝑔1) 

can be obtained by using Equation 5.1 on vehicle states at the reset time and at current time, 

respectively. 

�
𝜓𝜓1 = 𝜓𝜓0 + 𝜓𝜓𝑔𝑔1 − 𝜓𝜓𝑔𝑔0

�𝑋𝑋1𝑌𝑌1
� = �𝑋𝑋0𝑌𝑌0

� + 𝑅𝑅𝐹𝐹𝑔𝑔→𝐹𝐹 �
𝑋𝑋𝑔𝑔1 − 𝑋𝑋𝑔𝑔0
𝑌𝑌𝑔𝑔1 − 𝑌𝑌𝑔𝑔0

�
 (5.2) 

where: 𝑅𝑅𝐹𝐹𝑔𝑔→𝐹𝐹 = �
𝑐𝑐𝑚𝑚𝑠𝑠 (𝜓𝜓𝑔𝑔0) 𝑠𝑠𝑠𝑠𝑛𝑛(𝜓𝜓𝑔𝑔0)
−𝑠𝑠𝑠𝑠𝑛𝑛 (𝜓𝜓𝑔𝑔0) 𝑐𝑐𝑚𝑚𝑠𝑠(𝜓𝜓𝑔𝑔0)�. 

 

 

Figure 5.5: Frame transformation/conversion component transformation between 𝐹𝐹𝑔𝑔 frame 

and 𝐹𝐹 frame [45]. 

 

The third component of the process is another frame conversion operation displayed 

in Figure 5.6. The coordinate frame used in the virtual environment, named as the 𝐹𝐹𝑖𝑖  frame, 

is shown on the right-hand side of Figure 5.6, where the initial location and heading of the 

virtual vehicle is defined at reset time t0. An additional coordinate frame, named the vehicle 

(𝐹𝐹𝑣𝑣) frame, is defined as shown on the left-hand side of Figure 5.6, with zero heading pointing 
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in the positive X-axis direction and positive heading angle in the CCW direction. The frame 

transformation operation can thus be carried out as follows: 

             �
𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑣𝑣
𝑌𝑌𝑖𝑖 = −𝑌𝑌𝑣𝑣
𝜓𝜓𝑖𝑖 = −𝜓𝜓𝑣𝑣

 (5.3) 

 

 

Figure 5.6: Frame transformation/conversion component 3: conversion between 𝐹𝐹𝑣𝑣  frame 

and 𝐹𝐹𝑖𝑖  frame [45]. 

 

The final component of the process is illustrated in Figure 5.7. This frame 

transformation procedure connects the previously discussed intermediate 𝐹𝐹  frame and 

vehicle 𝐹𝐹𝑣𝑣  frame. The location and heading of the vehicle at time t1 can be represented in the 

𝐹𝐹𝑣𝑣  frame as illustrated in Equation 5.4. It should be noted that the set (𝑋𝑋𝑣𝑣0,𝑌𝑌𝑣𝑣0,𝜓𝜓𝑣𝑣0) can be 

obtained by using Equation 5.3 on the initial position and heading of the virtual vehicle 

defined in the Fc frame. Once (𝑋𝑋𝑣𝑣1,𝑌𝑌𝑣𝑣1,𝜓𝜓𝑣𝑣1) set is obtained from Equation 5.4, Equation 5.3 

can be applied again to represent the current vehicle location and heading information in the 

Fc frame, which will complete the motion synchronization procedure. 

   �
𝜓𝜓𝑣𝑣1 = 𝜓𝜓𝑣𝑣0 + 𝜓𝜓1 − 𝜓𝜓0

�𝑋𝑋𝑣𝑣1𝑌𝑌𝑣𝑣1
� = �𝑋𝑋𝑣𝑣0𝑌𝑌𝑣𝑣0

� + 𝑅𝑅𝐹𝐹→𝐹𝐹𝑣𝑣 �
𝑋𝑋1 − 𝑋𝑋0
𝑌𝑌1 − 𝑌𝑌0

� (5.4) 
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where: 𝑅𝑅𝐹𝐹→𝐹𝐹𝑣𝑣 = �
𝑐𝑐𝑚𝑚𝑠𝑠 (𝜓𝜓𝑣𝑣0) −𝑠𝑠𝑠𝑠𝑛𝑛(𝜓𝜓𝑣𝑣0)
𝑠𝑠𝑠𝑠𝑛𝑛 (𝜓𝜓𝑣𝑣0) 𝑐𝑐𝑚𝑚𝑠𝑠(𝜓𝜓𝑣𝑣0) �. 

 

 

Figure 5.7: Frame transformation/conversion component transformation between 𝐹𝐹 frame 

and 𝐹𝐹𝑣𝑣  frame [45]. 

 

5.2.3 V2P System Structure 

To illustrate the multi-actor capabilities of the proposed VVE approach, a Vehicle-to-

VRU communication is implemented. The system architecture is displayed in Figure 5.8. The 

pedestrian carries a mobile phone equipped with onboard IMU and GPS sensors. A mobile 

application, adapted from [46], is implemented on the phone, where the GPS location and 

heading of the pedestrian are broadcasted as part of personal safety messages (PSM) via 

Bluetooth low-energy (BLE) connection. A Bluetooth reception board listens to the PSM and 

transmits pedestrian motion information to the virtual environment via Ethernet connection 

between the board and the simulation computer onboard the real vehicle. Frame 

transformation/conversion operations like those described in the previous section are 

carried out in the virtual environment to synchronize the virtual pedestrian motions to the 

real pedestrian motions. With this architecture, it is possible to initialize virtual pedestrian 

position and orientation in the virtual environment such that traffic testing scenarios can be 
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constructed, while the real pedestrian operates in a safe space out of the harm’s way, 

ensuring the safety of the test. Figure 5.9 demonstrates one of such possible test setups. 

Figure 5.10 presents the information flow of our VVE V2P implementation. 

 

 

Figure 5.8: Implemented Vehicle-to-VRU architecture [44]. 

 

 

Figure 5.9: One possible V2P test setup with VVE method. The arrow directions represent 

the actors’ directions of travel in the real (red) and the virtual (blue) world [45]. 
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Figure 5.10: VVE V2P information flow [45]. 

 

5.3 Results 

The capability of real-virtual vehicle motion synchronization using the proposed VVE 

method was tested with the setup shown in Figure 5.11. In this setup, a screen inside the 

vehicle is connected to the simulation computer, displaying the virtual vehicle's motion 

within the virtual environment while the real test vehicle operates in an open parking lot. 

The results of this testing are presented in Figure 5.12, where the motion trajectory of the 

real vehicle is plotted on the real-world coordinate frame, and the corresponding virtual 

vehicle's motion trajectory is plotted in the virtual environment. The results demonstrate 

that satisfactory synchronization between the real-world and virtual-world motions has 

been achieved. 

 

Figure 5.11: VVE real-virtual motion synchronization [45]. 
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Figure 5.12: VVE motion synchronization test results: (a) Motion trajectory in the real world; 

(b) Motion trajectory in the virtual world [45]. 

 

To demonstrate the Vehicle-to-VRU communication capability with the VVE method, 

the test is conducted with the setup displayed in Figure 5.14. The virtual pedestrian is 

spawned in the virtual environment and the initial position and orientation is set in the 

virtual environment in relation to the pose of the virtual vehicle. The real pedestrian walks 

in the vicinity of the real test vehicle while holding the mobile phone with the V2P safety 

application enabled. The position and heading of the real pedestrian are sent to the virtual 

environment via Bluetooth connection and after frame transformation/conversion 

operations, the location and heading of the virtual pedestrian are updated accordingly. It 

should be noted that the virtual pedestrian location and heading can be easily reset in the 

virtual environment, so that the real pedestrian can operate at a safe distance from the test 

vehicle and in a direction that does not cross path with the test vehicle. Such capability is 

illustrated in Figure 5.15 where the real pedestrian is walking behind the test vehicle while 
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the virtual pedestrian is walking in front of the virtual vehicle.  

 

 

Figure 5.13: VVE virtual sensor data: (a) RGB camera; (b) LiDAR (figure not to scale) [45]. 

 

5.4 Conclusions 

This chapter introduced a novel approach called Vehicle-in-Virtual-Environment 

(VVE) for the safe, efficient, and cost-effective development, demonstration, and evaluation 

of ADAS and Connected Autonomous Driving (CAD) systems. The VVE method synchronizes 

the movements of a real test vehicle, operating in a secure environment, with those of a 

virtual vehicle embedded in a realistic 3D virtual environment. This setup allows for the easy 

creation and testing of various traffic scenarios. The paper details the implementation of this 

method with a focus on the frame transformation and conversion operations that ensure 

precise motion synchronization. Additionally, a Vehicle-to-Vulnerable Road User (VRU) 

communication setup is implemented to showcase the VVE method's capability to handle 
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multi-actor interactions. 

 

Figure 5.14: V2P connectivity in VVE test setup [45]. 

 

Figure 5.15: Safe operation of V2P connectivity test with (a) Virtual pedestrian walks in front 

of the virtual vehicle; (b) Real pedestrian walks behind the real test vehicle [45].  
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Chapter 6 

Future Work 

In conclusion, the rapid urbanization and increase in privately owned vehicles have 

exacerbated traffic congestion and car accidents, posing significant challenges for modern 

cities. Autonomous driving systems (ADS) offer a promising solution to mitigate these issues 

by reducing the human errors responsible for a substantial number of accidents. However, 

the current methods for testing and evaluating these systems, including Model-in-the-Loop 

(MIL) and Hardware-in-the-Loop (HIL) simulations, are limited and can lead to unsafe public 

road deployments, eroding public trust. To address these challenges, the Vehicle-in-Virtual-

Environment (VVE) method is introduced as a more effective approach. This method allows 

for safe, efficient, and realistic testing of autonomous driving functions by synchronizing real 

vehicle motions with virtual scenarios.  

In the first year of our project, we focused primarily on using the VVE method to 

enhance pedestrian safety. Our research began with the analysis and simulation of key 

pedestrian crash scenarios identified by the Fatality Analysis Reporting System (FARS). We 

then implemented RGB camera-based detection of vulnerable road users (VRUs) to 

accurately identify pedestrians around the vehicle during navigation. A Disturbance 

Observer (DOB)-integrated PID path tracking controller was also introduced for precise and 

efficient path tracking. Additionally, we developed a deep reinforcement learning (DRL)-

based collision avoidance framework to handle emergency situations. The VVE method was 

then employed to test and evaluate these autonomous vehicle functions related to pedestrian 

safety. 

Looking ahead to the second year, our focus will shift to improving bicyclist safety. 

Compared to pedestrians, bicyclists move at higher speeds and are more prone to collisions, 

necessitating even greater caution in our approach. This year, we reviewed extensive 

literature on Lidar data processing and trajectory prediction for VRUs, laying the 

groundwork for our upcoming efforts. In the second year of the project, we will work on 
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implementing these findings. Also, we will have a particular focus on developing robust and 

delay-tolerant trajectory control. This will involve the VVE method for testing and evaluation, 

ensuring that the calculated collision-free vehicle trajectories—whether they require 

slowing down, braking, or steering—are executed with precision and safety. 
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